Log in

Reactive Oligomeric Protic Cationic Linear Ionic Liquids with Different Types of Nitrogen Centers

  • Functional Polymers
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Reactive linear oligo(ethylene oxides) containing terminal secondary hydroxyl groups and secondary amino groups combined with nitrogen heterocyclic fragments are synthesized by the reaction of oligo(oxyethylene glycol) α,ω-diglycidyl ether (М = 1.0 × 103) with 1-(3-aminopropyl)imidazole, 2-aminopyridine, or 2-amino-3-methylpyridine. Protonation of the synthesized compounds by ethanesulfonic acid and p-toluenesulfonic acid at their different ratios is studied. This process makes it possible to obtain oligomeric linear protic cationic ionic liquids capable of condensation. The proton conductivity of oligomeric ionic liquids is investigated under anhydrous conditions in the temperature range of 40–120°С. The highest conductivity (1.36 × 10–3 S/cm) is attained in the case of methylpyridinium ethanesulfonate oligomeric ionic liquid at 120°С. These compounds are thermally stable to a temperature of 250–290°С. They show promise for the synthesis of polymeric analogs of block ionic liquids suitable in the production of electrochemical devices for various purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Hallett and T. Welton, Chem. Rev. 111 (5), 3508 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. T. L. Greaves and C. J. Drummond, Chem. Rev. 8 (1), 206 (2008).

    Article  CAS  Google Scholar 

  3. T. L. Greaves and C. J. Drummond, Chem. Rev. 115 (20), 11379 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. R. Hayes, G. G. Warr, and R. Atkin, Chem. Rev. 115 (13), 6357 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. J. Yuan, D. Meccerreyes, and M. Antonietti, Prog. Polym. Sci. 38 (7), 1009 (2013).

    Article  CAS  Google Scholar 

  6. D. Mecerreyes, Prog. Polym. Sci. 36 (12), 1629 (2011).

    Article  CAS  Google Scholar 

  7. A. S. Shaplov, D. O. Ponkratov, P. S. Vlasov, E. I. Lozinskaya, L. I. Komarova, I. A. Malyshkina, F. Vidal, G. T. M. Nguyen, M. Armand, C. Wandrey, and Ya. S. Vygodskii, Polym. Sci., Ser. B 55 (3–4), 122 (2013).

    Article  CAS  Google Scholar 

  8. A. S. Shaplov, D. O. Ponkratov, and Y. Vygodskii, Polym. Sci., Ser. B 58 (2), 73 (2016).

    Article  CAS  Google Scholar 

  9. V. V. Shevchenko, A. V. Stryutsky, N. S. Klymenko, M. A. Gumenna, A. A. Fomenko, V. N. Bliznyuk, V. V. Trachevsky, V. V. Davydenko, and V. V. Tsukruk, Polymer 55 (16), 3349 (2014).

    Article  CAS  Google Scholar 

  10. V. V. Shevchenko, A. V. Stryutsky, N. S. Klymenko, M. A. Gumennaya, A. A. Fomenko, V. V. Trachevsky, V. V. Davydenko, V. N. Bliznyuk, and A. V. Dorokhin, Polym. Sci., Ser. B 56 (5), 583 (2014).

    Article  CAS  Google Scholar 

  11. S. M. Mezhikovsky, A. E. Arinstein, and R. Y. Deberdeev, Oligomeric State of a Substance (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  12. W. Xu, P. A. Ledin, V. V. Shevchenko, and V. V. Tsukruk, ACS Appl. Mater. Interfaces 7 (23), 12570 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. X. He and T. H. Chan, Org. Lett. 9 (14), 2681 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. M. Yoshizawa and H. Ohno, Electrochim. Acta 46 (10–11), 1723 (2001).

    Article  CAS  Google Scholar 

  15. M. Yoshizawa and H. Ohno, Chem. Lett. 28 (9), 889 (1999).

    Article  Google Scholar 

  16. M. Wanga, Y. Lin, X. Zhou, X. **ao, L. Yang, S. Feng, and X. Li, Mater. Chem. Phys. 107 (1), 61 (2008).

    Article  CAS  Google Scholar 

  17. F. Yan and J. Texter, Angew. Chem. 119 (14), 2492 (2007).

    Article  Google Scholar 

  18. H. Ohno, M. Yoshizawa, and W. Ogihara, Electrochim. Acta 50 (2–3), 255 (2004).

    Article  CAS  Google Scholar 

  19. J. Juger, F. Meyer, F. Vidal, C. Chevrot, and D. Teyssie, Tetrahedron Lett. 50 (1), 128 (2009).

    Article  CAS  Google Scholar 

  20. Y. Men, M. Drechsler, and J. Yuan, Macromol. Rapid Commun. 34 (21), 1721 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Y. Wang, J. Luo, and Z. Liu, Org. Chem. 739, 1 (2013).

    Article  CAS  Google Scholar 

  22. O. S. Sverdlikovs’ka, M. V. Burmistr, and O. V. Chervakov, Eur. Appl. Sci., No. 10, 109 (2014).

    Google Scholar 

  23. V. V. Shevchenko, M. A. Gumenna, V. F. Korolovych, A. V. Stryutsky, V. V. Trachevsky, O. Hrebnov, V. V. Klepko, N. S. Klymenko, V. F. Shumsky, V. V. Davydenko, and P. A. Ledin, J. Mol. Liq. 235, 68 (2017).

    Article  CAS  Google Scholar 

  24. A. M. Toroptseva, K. V. Belogorodskaya, and V. M. Bondarenko, Laboratory Practical Course in the Chemistry and Technology of Macromolecular Compounds (Khimiya, Leningrad, 1972) [in Russian].

    Google Scholar 

  25. A. N. Masri, M. I. Abdul Mutalib, and J. M. Leveque, Ind. Eng. Manage. 5 (4), 197 (2016).

    Google Scholar 

  26. K. Xu and C. A. Angell, Electrochim. Acta 40 (13–14), 2401 (1995).

    Article  CAS  Google Scholar 

  27. H. Ohno and K. Ito, Polymer 36 (4), 891 (1995).

    Article  CAS  Google Scholar 

  28. J. P. Guthrie and D. C. Pike, Can. J. Chem. 65 (8), 1951 (1987).

    Article  CAS  Google Scholar 

  29. K. Seo and D. Kim, Macromol. Biosci. 6 (9), 758 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. I. R. Bellobono and G. Favini, J. Chem. Soc. B 1971, 2034 (1971).

    Article  Google Scholar 

  31. E. P. Kadar, C. E. Wujcik, D. P. Wolford, and O. Kavetskaia, J. Chromatogr. 863 (1), 1 (2008).

    CAS  Google Scholar 

  32. H. Honda, Molecules 18 (4), 4786 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. J. P. Guthrie, Can. J. Chem. 56 (17), 2342 (1978).

    Article  CAS  Google Scholar 

  34. P. M. Dewick, Essentials of Organic Chemistry. For Students of Pharmacy, Medicinal Chemistry and Biological Chemistry (Wiley, Chichester, 2006).

    Google Scholar 

  35. V. V. Shevchenko, A. V. Stryutskii, and N. S. Klimenko, Theor. Exp. Chem. 47 (2), 67 (2011).

    Article  CAS  Google Scholar 

  36. J. D. Menczel and R. B. Prime, Thermal Analysis of Polymers. Fundamentals and Applications (Wiley, New Jersey, 2009).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shevchenko.

Additional information

Original Russian Text © V.V. Shevchenko, M.A. Gumennaya, A.V. Stryutsky, N.S. Klimenko, V.V. Trachevskii, V.V. Klepko, V.V. Davidenko, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya B, 2018, Vol. 60, No. 5, pp. 380–393.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.V., Gumennaya, M.A., Stryutsky, A.V. et al. Reactive Oligomeric Protic Cationic Linear Ionic Liquids with Different Types of Nitrogen Centers. Polym. Sci. Ser. B 60, 598–611 (2018). https://doi.org/10.1134/S1560090418050160

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090418050160

Navigation