Log in

The green synthetic approach to prepare PbS/chitosan nanocomposites and its new optical sensing active properties for 2-isonaphthol

  • Composites
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

PbS nanoparticles were successfully synthesized in the presence of chitosan (CS) through an in situ method. This method is an effective, simple, and green synthetic approach to preparing nanomaterial films. The structure, morphology, and stability of the materials were examined via Fourier transform infrared spectroscopy, and the characteristic peak of the NH2 group shifted from 1554 to 1598 cm-1 after PbS was formed in the film. The Pb–S bond exhibited a vibrational absorption peak at 605 cm-1, which further confirmed the generation of PbS nanoparticles. Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) procedures were performed as well; well-defined nanoparticles were detected in the CS matrix by SEM. As per DSC findings, the thermal stabilities of the PbS/CS film were 50°C higher than those of pure CS. Moreover, the fluorescence emission of the films was sensitive to the presence of 2-isonaphthol. The effect of 2-isonaphthol concentration on the emission of films increases significantly with an increase in this concentration. The concentration-dependent fluorescence can be described by a correlation equation when 2-isonaphthol concentration ranges from 0 to 12.56 mg/L, and fluorescence results revealed that the PbS/CS nanoparticles were sensitive to 2-isonaphthol in the liquid phase. The proposed method may be applied to detect 2-isonaphthol in the environment and in the chemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. F. Shen and X. P. Yan, Angew. Chem., Int. Ed. 46, 7659 (2007).

    Article  CAS  Google Scholar 

  2. Y. R. Ma, L. M. Qi, J. M. Ma, and H. M. Cheng, Cryst. Growth Des. 4, 351 (2004).

    Article  CAS  Google Scholar 

  3. A. M. Fernandes and M. H. Abdalhai, Biosens. Bioelectron. 63, 399 (2015).

    Article  CAS  Google Scholar 

  4. C. **e, L. **ao, S. Peng, and X. Shi, New J. Chem. 38, 6095 (2014).

    Article  CAS  Google Scholar 

  5. R. Jiang, J. Y. Zhu, Y. Fu, and Y. Guan, Appl. Surf. Sci. 258, 3513 (2012).

    Article  CAS  Google Scholar 

  6. P. D. Yang and C. M. Lieber, Science 273, 1836 (1996).

    Article  CAS  Google Scholar 

  7. N. N. Zhao and L. M. Qi, Adv. Mater. 18, 359 (2006).

    Article  CAS  Google Scholar 

  8. Y. H. Zhang, L. Guo, P. G. Yin, R. Zhang, Q. Zhang, and S. H. Yang, Chem. Eur. J. 13, 2903 (2007).

    Article  CAS  Google Scholar 

  9. M. Kowshik, W. Vogel, J. Urban, S. K. Kulkarni, and K. M. Paknikar, Adv. Mater. 14, 815 (2002).

    Article  CAS  Google Scholar 

  10. M. Orphanou, K. L. Tasoula, K. Frank, and C. Walter, Nano Lett. 3, 569 (2003).

    Article  Google Scholar 

  11. Y. P. Zhang, Y. Chu, Y. Yang, L. H. Dong, F. Y. Yang, and J. G. Liu, Colloid Polym. Sci. 285, 1061 (2007).

    Article  CAS  Google Scholar 

  12. P. T. Zhao, G. Chen, Y. Hu, X. L. He, K. Wu, Y. Cheng, and K. X. Huang, J. Cryst. Growth 303, 632 (2007).

    Article  CAS  Google Scholar 

  13. S. L. **ong, B. J. **, D. C. Xu, C. G. Wang, X. M. Feng, H. Y. Zhou, and Y. T. Qian, J. Phys. Chem. C 111, 16761 (2007).

    Article  CAS  Google Scholar 

  14. D. B. Kuang, A. W. Xu, Y. P. Fang, H. Q. Liu, C. Frommen, and P. Fenske, Adv. Mater. 20, 1747 (2003).

    Article  Google Scholar 

  15. Y. H. Ni, H. J. Liu, F. Wang, Y. Y. Liang, J. M. Hong, X. Ma, and Z. Xu, Cryst. Growth Des. 4, 759 (2004).

    Article  CAS  Google Scholar 

  16. M. Mohammadikish, F. Davar, E. Loghman, and R. Mohammad, J. Mater. Sci.: Mater. Electron. 26, 2937 (2015).

    CAS  Google Scholar 

  17. W. X. Wang, Q. Li, M. Li, H. Lin, and L. J. Hong, J. Cryst. Growth 299, 17 (2007).

    Article  CAS  Google Scholar 

  18. H. Tributsch and J. A. Rojas-Chapana, Electrochim. Acta 45, 4705 (2000).

    Article  CAS  Google Scholar 

  19. Z. Li and Y. Du, Mater. Lett. 57, 2480 (2003).

    Article  CAS  Google Scholar 

  20. S. Wang and M. Y. Zheng, J. Polym. Eng. 34 (4), 339 (2014).

    Article  CAS  Google Scholar 

  21. S. Wang and D. M. Yu, Mater. Sci. Eng., B 176 (6), 873 (2011).

    Article  CAS  Google Scholar 

  22. S. Wang and Y. H. Gao, Polym. Sci., Ser. B 57 (3), 252 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yi, H. & Zheng, M. The green synthetic approach to prepare PbS/chitosan nanocomposites and its new optical sensing active properties for 2-isonaphthol. Polym. Sci. Ser. B 58, 474–478 (2016). https://doi.org/10.1134/S1560090416040084

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090416040084

Navigation