Log in

Approximate path integral solution for a Dirac particle in a deformed Hulthén potential

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The problem of a Dirac particle moving in a deformed Hulthén potential is solved in the framework of the path integral formalism. With the help of the Biedenharn transformation, the construction of a closed form for the Green’s function of the second-order Dirac equation is done by using a proper approximation to the centrifugal term and the Green’s function of the linear Dirac equation is calculated. The energy spectrum for the bound states is obtained from the poles of the Green’s function. A Dirac particle in the standard Hulthén potential (q = 1) and a Dirac hydrogen-like ion (q = 1 and a → ∞) are considered as particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. P. Bahethi and M. G. Fuda, J. Math. Phys. 12, 2076 (1971)

    Article  ADS  Google Scholar 

  2. C. S. Lam and Y. P. Varshni, Phys. Rev. A 4, 1874 (1971)

    Article  ADS  Google Scholar 

  3. H. van Haeringen, Phys. Rev. A 18, 56 (1978)

    Article  ADS  Google Scholar 

  4. B. Durand and L. Durand, Phys. Rev. D: Part. Fields 23, 1092 (1981)

    Article  ADS  Google Scholar 

  5. R. Dutt and Y. P. Varshni, J. Math. Phys. 24, 2770 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  6. L. Hall, Phys. Rev. A 32, 14 (1985).

    Article  ADS  Google Scholar 

  7. J. Lindhard and A. Winther, Nucl. Phys. A 166, 413 (1971)

    Article  ADS  Google Scholar 

  8. U. Myhrman, J. Math. Phys. 23, 1732 (1980); J. Phys. A: Math. Gen. 16, 263 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Dutt, K. Chowdhury, and Y. P. Varshni, J. Phys. A: Math. Gen. 18, 1379 (1985).

    Article  ADS  Google Scholar 

  10. A. A. Berezin, Phys. Status Solidi B 50, 71 (1979); J. Phys. C 12, L363 (1972); Phys. Rev. B 33, 2122 (1986).

    Article  ADS  Google Scholar 

  11. J. Gruninger, J. Chem. Phys. 55, 3561 (1971)

    Article  ADS  Google Scholar 

  12. K. Szalcwicz and H. J. Mokhorst, J. Chem. Phys. 75, 5785 (1981)

    Article  ADS  Google Scholar 

  13. G. Malli, Chem. Phys. Lett. 26, 578 (1981).

    Article  ADS  Google Scholar 

  14. L. Hulthén, Ark. Mat. Astron. Fys. A 28, 5 (1942).

    MathSciNet  Google Scholar 

  15. S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1974).

    MATH  Google Scholar 

  16. E. D. Filho and R. M. Ricotta, Mod. Phys. Lett. A 10, 1613 (1995).

    Article  ADS  Google Scholar 

  17. B. Gonul, O. Ozer, Y. Gancelik, and M. Kocak, Phys. Lett. A 275, 238 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  18. O. Bayrak, G. Kocak, and I. Boztosun, J. Phys. A: Math. Gen. 39, 11521 (2006).

    Article  ADS  Google Scholar 

  19. J. M. Cai, P. Y. Cai, and A. Inomata, Phys. Rev. A 34, 4621 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Y. Guo, J. Meng, and F. X. Xu, Chin. Phys. Lett. 20, 602 (2003).

    Article  ADS  Google Scholar 

  21. A. D. Alhaidari, J. Phys. A: Math. Gen. 37, 5805 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Haouat and L. Chetouani, Phys. Scr. 77, 025005 (2008).

    Article  ADS  Google Scholar 

  23. L. C. Biedenharn, Phys. Rev. 126, 845 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  24. G. J. Papadopoulos and J. T. Devreese, Phys. Rev. D: Part. Fields 13, 2227 (1976).

    Article  ADS  Google Scholar 

  25. M. A. Kayed and A. Inomata, Phys. Rev. Lett. 53, 107 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Boudjedaa, L. Chetouani, L. Guechi, and T. F. Hammann, Phys. Scr. 46, 289 (1992); Nuovo Cim. B 109, 219 (1994)

    Article  ADS  Google Scholar 

  27. B. Bentag, L. Chetouani, L. Guechi, and T. F. Hammann, Nuovo Cim. B 111, 99 (1996).

    Article  ADS  Google Scholar 

  28. C. C. Bernido, M. V. Carpio-Bernido, and N. S. Lam, Phys. Lett. A 231, 395 (1997).

    Article  ADS  Google Scholar 

  29. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Article  ADS  Google Scholar 

  30. P. C. Martin and R. J. Glauber, Phys. Rev. 109, 1307 (1958).

    Article  ADS  Google Scholar 

  31. M. K. F. Wong and H. Y. Yeh, Phys. Rev. D: Part. Fields 25, 3396 (1982).

    Article  ADS  Google Scholar 

  32. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics Polymer Physics and Financial Markets, 5th ed. (World Scientific, Singapore, 2009).

    Book  MATH  Google Scholar 

  33. A. Arai, J. Math. Anal. Appl. 158, 63 (1991). J. Phys. A: Math. Gen. 34, 4281 (2001).

    Article  MathSciNet  Google Scholar 

  34. D. W. McLaughlin and L. S. Schulman, J. Math. Phys. 12, 2520 (1971).

    Article  ADS  Google Scholar 

  35. N. Rosen and P. M. Morse, Phys. Rev. 42, 210 (1932).

    Article  ADS  Google Scholar 

  36. C. Grosche, J. Phys. A: Math. Gen. 38, 2947 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  37. F. Benamira, L. Guechi, S. Mameri, and M. A. Sadoun, J. Math. Phys. 48, 032102 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  38. F. Benamira, L. Guechi, S. Mameri, and M. A. Sadoun, J. Math. Phys. 51, 032301 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  39. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1965).

    Google Scholar 

  40. L. D. Landau and E. M. Lifchitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, Oxford, 1958).

    Google Scholar 

  41. L. I. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill, Kogakusha, Tokyo, 1968).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Guechi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadja, A., Benamira, F. & Guechi, L. Approximate path integral solution for a Dirac particle in a deformed Hulthén potential. Phys. Part. Nuclei Lett. 14, 435–443 (2017). https://doi.org/10.1134/S1547477117030104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117030104

Keywords

Navigation