Log in

Valunistoe Epithermal Au–Ag Deposit (East Chukotka, Russia): Geological Structure, Mineralogical–Geochemical Peculiarities and Mineralization Conditions

  • ON THE 90TH ANNIVERSARY OF IGEM RAS
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The Valunistoe Au–Ag deposit is the third largest among epithermal deposits in Chukotka after the Kupol and Dvoinoe. It is located at the western closing of the East Chukotka flank zone of the Okhotsk-Chukotka volcanic belt. Volcanic domes (Pravogornenskaya, Zhil’ninskaya, Shakhskaya, Valunistaya, Shalaya, and Oranzhevaya, each is 3–6 km in diameter) have the main ore-controlling significance in the area; they form a chain elongated to the northeast, along the Kanchalan fault zone. Near the deposit, Upper Cretaceous volcanics are widespread: ignimbrites, lavas and tuffs ranging from rhyolite to basaltic composition, and lenses and interbeds of sedimentary rocks, subvolcanic bodies and dikes of andesites, basalts, and dacites. The structure of the deposit is caused by its localization within the limits of the eponymous (Valunistaya) volcanic dome. Twelve ore-bearing vein zones with thicknesses ranging from several to several tens of meters have been revealed at the deposit. The Glavnaya (Main) and Novaya (New) vein zones have been studied in detail; they are traced along their strikes to a distance of more than 1500 m and consist of en echelon veins 1.0 m thick on average, with lengths varying from 100 to 400 m. Based on the sampling data, Au and Ag contents in ores are 0–474.3 and 0–3794.23 g/t, respectively. Colloform-banded structures are frequently encountered, often combined with breccia structures. The main vein minerals are quartz and adularia; calcite, chlorite, fluorite, sericite, pyrophyllite, kaolinite, montmorillonite, gypsum, and epidote are less frequent. The main ore minerals are pyrite, acanthite, chalcopyrite, galena, sphalerite; secondary ore minerals are native Au and Ag and polybasite; rare ore minerals are pearceite, magnetite, hematite, marcasite, freibergite, tetrahedrite, bournonite, hessite, matildite, and others. Ores are characterized by an Au/Ag ratio from 1 : 5 to 1 : 10 and sulfidity (0.5–5%). Ores are enriched in many elements (Au, Ag, Sb, Cd, Pb, Cu, Zn, As, Se, Mo, Te, and Cr), with enrichment factors ranging from several times (Se, Mo, Te, and Cr), to tenfold (Cd, Pb, Cu, and Zn) and hundredfold (Sb) levels, reaching an excess of tens and hundreds thousand times for Au and Ag (Fig. 7). Ores are characterized by a low total REE and demonstrate positive Eu anomalies. Geochemical features are consistent with the mineral composition of ores. Full homogenization of fluid inclusions in quartz occurs at temperatures of 203–284°C and 174–237°C in calcite, while the salt concentration in both cases is from 0.2 to 0.7 wt % NaCl equiv. Fluid density changes from 0.87 to 0.56 g/cm3. The results give grounds to attribute the Valunistoe deposit to the low-sulfidized epithermal class. The data provided in the article are of practical value for regional forecast–metallogenic maps and can be used in searching for and appraising epithermal Au–Ag deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. Hereinafter, “*” after the year of a reference denotes a production report stored in the holdings of Rosgeolfond (Russian Fund for Geology).

REFERENCES

  1. Akinin, V.V. and Miller, E.L., Evolution of calc-alkaline magmas of the Okhotsk–Chukotka volcanic belt, Petrology, 2011, vol. 19, no. 3, pp. 249–290.

    Article  Google Scholar 

  2. Bau, M., Rare–earth element mobility during hydrothermal and metamorphic fluid–rock interaction and the significance of the oxidation state of europium, Chem. Geol., 1991, vol. 93, pp. 219–230.

    Article  Google Scholar 

  3. Belyi, V.F., Geologiya Okhotsko–Chukotskogo vulkanogennogo poyasa (Geology of the Okhotsk–Chukotka Voclanogenic Belt), Magadan: SVKNII DVO RAN, 1994.

  4. Bodnar, R.J. and Vityk, M.O., Interpretation of microthermometric data for H2O–NaCl fluid inclusions, Fluid Inclusions in Minerals: Methods and Applications, Siena: Pontignano, 1994, pp. 117–130.

  5. Bodnar, R.J., Lecumberri–Sanchez, P., Moncada, D., and Steele–Maclnnes, P., Fluid inclusions in hydrothermal ore deposits, Reference Module in Earth Systems and Environmental Sciences, Treatise on Geochemistry, 2nd Ed. (Elsevier, 2014), 119–142.

    Google Scholar 

  6. Borisenko, A.S., Cryometric study of salt composition of gas–liquid inclusions in minerals, Geol. Geofiz., 1977, no. 8, pp. 16–27.

  7. Bortnikov, N.S., Geochemistry and origin of the ore-forming fluids in hydrothermal–magmatic systems in tectonically active zones, Geol. Ore Deposits, 2006, vol. 48, no. 1, pp. 1–22.

    Article  Google Scholar 

  8. Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., Prokof’ev, V.Yu., Alpatov, V.A., and Bakharev, A.G., Fluid composition and origin in the hydrothermal system of the Nezhdaninsky gold deposit, Sakha (Yakutia), Russia, Geol. Ore Deposits, 2007, vol. 49, no. 2. pp. 87–128.

    Article  Google Scholar 

  9. Brown, P., Flincor: a computer program for the reduction and investigation of fluid inclusion data, Am. Mineral., 1989, vol. 74, pp. 1390–1393.

    Google Scholar 

  10. Bryzgalov, I.A. and Krivitskaya, N.N., Composition of silver minerals of the Ag–Pb–Bi–Te–S system of the Valunistoe deposit, Northeast Russia, Rol’ mineralogii v razvitii mineral’no–syr’evoi bazy blagorodnykh metallov i almazov XXI veka (Role of Mineralogy in the Development of the Raw-Mineral Base of Noble Metals and Diamonds of 21th Century), Moscow: IGEM RAN, 1998, pp. 28–30.

    Google Scholar 

  11. Sidorov, A.A., Belyi, V.F., Volkov, A.V., Alekseev, V.Yu., and Kolova, E.E., The gold–silver Okhotsk–Chukotka volcanic belt, Geol. Ore Deposits, 2009, vol. 51, no. 6, pp. 441–455.

    Article  Google Scholar 

  12. Elmanov, A.A., Prokof’ev, V.Yu., Volkov, A.V., Sidorov, A.A., and Voskresenskii, K.I., First data on formation conditions of the Zhilnoye Au–Ag epithermal gold deposit (Eastern Chukotka, Russia), Dokl. Earth Sci., 2018, vol. 480, no. 6, pp. 725–729.

    Article  Google Scholar 

  13. Goryachev, N.A., Vikent’eva, O.V., Bortnikov, N.S., Prokof’ev, V.Yu., Alpatov, V.A., and Golub, V.V., The world-class Natalka gold deposit, northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore, Geol. Ore Deposits, 2008, vol. 50, no. 5, pp. 362–390.

    Article  Google Scholar 

  14. Keithe, T., White, D., and Beeson, M., Hydrothermal alteration and self sealing in Y–7 and Y–8 drillholes in the northern part of Upper Geyser Basin, US Geol. Soc. Prof. Paper, 1978, vol. 1054A, pp. 34–49.

    Google Scholar 

  15. Kryazhev, S.G., Prokof’ev, V.Yu., and Vasyuta, Yu.V., Application of ICP–MS method in analyzing the composition of ore-forming fluids, Vestn. Mosk. Gos. Univ., Ser. 4. Geol., 2006, no. 4, pp. 30–36.

  16. Kun, L., Ruidong, Y., Wenyong, Ch., et al., Trace element and REE geochemistry of the Zhewang gold deposit, southeastern Guizhou province, China, Chin. J. Geochem., 2014, vol. 33, pp. 109–118.

    Article  Google Scholar 

  17. Leier, P.V., Ivanov, V.V., Ratkin, V.V., and Bundtsen, T.K., Epithermal gold–silver deposits of Northeast Russia: the first 40Ar–39Ar age determinations of the ores, Dokl. Earth Sci., 1997, vol. 356, no. 5, pp. 1141–1144.

    Google Scholar 

  18. Manning, D.A.C., Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones, Chem. Geol., 1994, vol. 111, pp. 111–129.

    Article  Google Scholar 

  19. Mineev, D.A., Lantanoidy v rudakh redkozemel’nykh i kompleksnykh mestorozhdenii (Lanthanides in Rare-Earth Ores and Complex Deposits), Moscow: Nauka, 1974.

  20. Monecke, T., Kempe, U., and Gotze, J., Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study, Earth Planet. Sci. Lett., 2002, vol. 202, nos. 3–4, pp. 709–724.

    Article  Google Scholar 

  21. Newberry, R.J., Layer, P.U., Ganz, P.B., et al., Preliminary analysis of chronology of Mesozoic magmatism and mineralization at Northeast Russia with allowance for 40Ar/39Ar dates and trace element data of igneous and mineralized rocks, Zolotoe orudenenie i granitoidnyi magmatizm Severnoi Patsifiki (Gold Mineralization and Granitoid Magmatism of Northern Pacific), Magadan: SVKNII DVO RAN, 2000, vol. 1, pp. 181–205.

    Google Scholar 

  22. Naboko, S.I. and Glavatskikh, S.F., Hydrothermal minerals of Goryachii Beach, Mineralogiya gidrotermal’nykh sistem Kamchatki (Mineralogy of Hydrothermal Systems of Kamchatka), Moscow: Nauka. 1970.

    Google Scholar 

  23. Novgorodova, M.I., Veretennikov, V.M., Boyarskaya, R.V., et al., Geochemistry of trace elements in quartz, Geokhimiya, 1984, no. 3, pp. 370–383.

  24. Novoselov, K.A., Kotlyarov, V.A., Belogub, E.V., Silver sulfoarsenides from ores of the Valunistoe gold–silver deposit, Chukotka, Zap. Ross. Mineral.O-va, 2009, vol. 138, no. 6, pp. 56–61.

    Google Scholar 

  25. Oreskes, N. and Einaudi, M.T., Origin of rare–earth element enriched hematite breccias at the Olympic Dam Cu–U–Au–Ag deposit, Roxby Downs, South Australia, Econ. Geol., 1990, vol. 85, no. 1, pp. 1–28.

    Article  Google Scholar 

  26. Polin, V.F., Petrologiya kontrastnoi serii Amguemo–Kanchalanskogo vulkanicheskogo polya Chukotki (Petrology of the Bimodal Series of the Amguem–Kanchalansk Volcanic Belt), Vladivostok: DVO AN SSSR, 1990.

  27. Remy, H., Treatise on Inorganic Chemistry (Elsevier, London, 1956), Vol. 1.

    Google Scholar 

  28. Rusinov, V.L., Metasomaticheskie protsessy v vulkanicheskikh tolshchakh (Metasomatic Processes in Volcanic Sequences), Moscow: Nauka, 1989.

  29. Sakhno, V.G., Polin, V.F., Akinin, V.V., Sergeev, S.A., Alenicheva, A.A., Tikhomirov, P.L., and Moll–Stolkap, E. J., The diachronous formation of the Enmyvaam and Amguema–Kanchalan volcanic fields in the Okhotsk–Chukotka Volcanic Belt (NE Russia): evidence from isotopic data, Dokl. Earth Sci., 2010, vol. 434, no. 2, pp. 1172–1178.

    Article  Google Scholar 

  30. Sidorov, A.A., Zoloto–serebryanaya formatsiya Vostochno–Aziatskikh vulkanogennykh poyasov (Gold–Silver Formation of the East Asian Volcanogenic Belts), Magadan, 1978.

    Google Scholar 

  31. Simmons, F.A., White, N.C., and John, D.A., Geological characteristics of epithermal precious and base metal deposits, Econ. Geol., 2005, Vol. 100, pp. 485–522.

    Article  Google Scholar 

  32. Struzhkov, S.F., Province of the Okhotsk–Chukotka volcanogenic belt, Zolotorudnye mestorozhdeniya Rossii (Gold Deposits of Russia), Moscow: Akvarel’, 2010, pp. 213–242.

    Google Scholar 

  33. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Composition and Evolution, Oxford: Blackwell, 1985.

    Google Scholar 

  34. Vinokurov, S.F., Europium anomalies in ore deposits and their geochemical significance, Dokl. Earth Sci., 1996, vol. 346, no. 6, pp. 281–283.

    Google Scholar 

  35. Vinokurov, S.F., Kovalenker, V.A., Safonov, Yu.G., and Kerzin, A.L., REE in quartz from epithermal gold deposits: distribution and genetic implications, Geochem. Int., 1999, vol. 37, no. 2, pp. 145–152.

    Google Scholar 

  36. Volkov, A.V., Goncharov, V.I., and Sidorov, A.A., Mestorozhdeniya zolota i serebra Chukotki (Gold and Silver Deposits of Chukotka), Magadan: SVKNII DVO RAN, 2006.

  37. Volkov, A. V., Prokof’ev, V. Yu., Savva, N. E., Sidorov, A.A., Byankin, M.A., Uyutnov, K.V., and Kolova, E.E., Ore formation at the Kupol epithermal gold–silver deposit in northeastern Russia deduced from fluid inclusion study, Geol. Ore Deposits, 2012, vol. 54, no. 4, pp. 295–303.

    Article  Google Scholar 

  38. Volkov, A.V., Sidorov, A.A., Savva, N.E., Kolova, E.E., Chizhova, I.A., and Murashov, K.Yu., The geochemistry of volcanogenic mineralization in the northwestern segment of the Pacific ore belt: Northeast Russia, J. Volcanol. Seismol., 2017, vol. 11, no. 6, pp. 389–406.

    Article  Google Scholar 

  39. Volkov A.V., Sidorov A.A., Prokof’ev V.Yu., Savva N.E., Kolova E.E., and Murashov K.Yu. Epithermal mineralization in the Okhotsk–Chukchi Volcano-Plutonic Belt, J. Volcanol. Seismol., 2018, vol. 12, no. 6, pp. 359–378.

    Article  Google Scholar 

  40. Zharikov V.A., Gorbachev N.S., Lightfoot, P., and Doherty, W., Rare earth element and yttrium distribution between fluid and basaltic melt at pressures of 1–12 kbar: evidence from experimental data, Dokl. Earth Sci., 1999, vol. 366, no. 2, pp. 543–545.

    Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 18-05-70001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Volkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Astafiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, A.V., Prokof’ev, V.Y., Vinokurov, S.F. et al. Valunistoe Epithermal Au–Ag Deposit (East Chukotka, Russia): Geological Structure, Mineralogical–Geochemical Peculiarities and Mineralization Conditions. Geol. Ore Deposits 62, 97–121 (2020). https://doi.org/10.1134/S1075701520020075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520020075

Keywords:

Navigation