Log in

Magnetic Nanoparticle-Supported Basic Ionic Liquid: A Reusable Phase-Transfer Catalyst for Knoevenagel Condensation in Aqueous Medium

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

This study addressed the preparation and characterization of polyethylene glycol-substituted 1-methyl­imidazolium hydroxide supported on magnetic nanoparticles (MNP@PEG-ImOH) by FESEM, FT-IR, EDAX, TEM, TGA, VSM, and XRD techniques. The catalytic activity of MNP@PEG-ImOH has been examined in Knoevenagel condensation between active methylene compounds and aromatic aldehydes in aqueous medium at room temperature. Numerous benefits of the catalytic system, such as higher yields of the products, shorter reaction time, reusability and recyclability of the catalyst, simplified work-up, and more acceptable reaction conditions, have been demonstrated. It is possible to easily isolate the catalyst from the reaction mixture by an external magnet and reapply it in the consequent reactions with no remarkable loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Campisciano, V., Giacalone, F., and Gruttadauria, M., Chem. Rec., 2017, vol. 17, p. 918. https://doi.org/10.1002/tcr.201700005

    Article  CAS  PubMed  Google Scholar 

  2. Rodríguez-Pérez, L., Teuma, E., Falqui, A., Gómez, M., and Serp, P., Chem. Commun., 2008, p. 4201. https://doi.org/10.1039/B804969F

  3. Tan, J., Liu, X., Yao, N., Hu, Y.L., and Li, X.H., ChemistrySelect, 2019, vol. 4, p. 2475. https://doi.org/10.1002/slct.201803739

    Article  CAS  Google Scholar 

  4. Polesso, B.B., Bernard, F.L., Ferrari, H.Z., Duarte, E.A., Vecchia, F.D., and Einloft, S., Heliyon, 2019, vol. 5, article ID e02183. https://doi.org/10.1016/j.heliyon.2019.e02183

  5. Rostamizadeh, S., Zekri, N., and Tahershamsi, L., Chem. Heterocycl. Compd., 2015, vol. 51, p. 526. https://doi.org/10.1007/s10593-015-1728-z

    Article  CAS  Google Scholar 

  6. Wang, T., Wang, W., Lyu, Y., Chen, X., Li, C., Zhang, Y., Song, X., and Ding, Y., RSC Adv., 2017, vol. 7, p. 2836. https://doi.org/10.1039/C6RA26780G

    Article  CAS  Google Scholar 

  7. Patel, N., Katheriya, D., Dadhania, H., and Dadhania, A., Res. Chem. Intermed., 2019, vol. 45, p. 5595. https://doi.org/10.1007/s11164-019-03922-0

    Article  CAS  Google Scholar 

  8. Ionic Liquids: Applications and Perspectives, Koko­rin, A., Ed., Rijeka, Croatia: InTech, 2011.

  9. Hu, Y.L. and Fang, D., J. Mex. Chem. Soc., 2017, vol. 60, p. 207. https://doi.org/10.29356/jmcs.v60i4.113

    Article  Google Scholar 

  10. Tamami, B., Sardarian, A., and Ataollahi, E., Turk. J. Chem., 2016, vol. 40, p. 422. https://doi.org/10.3906/kim-1504-40

    Article  CAS  Google Scholar 

  11. Khanapure, S., Jagadale, M., Kale, D., Gajare, S., and Rashinkar, G., Aust. J. Chem., 2019, vol. 72, p. 513. https://doi.org/10.1071/CH18576

    Article  CAS  Google Scholar 

  12. Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M., and Basset, J.-M., Chem. Rev., 2011, vol. 111, p. 3036. https://doi.org/10.1021/cr100230z

    Article  CAS  PubMed  Google Scholar 

  13. Jiang, Y., Guo, C., **a, H., Mahmood, I., Liu, C., and Liu, H., J. Mol. Catal. B: Enzym., 2009, vol. 58, p. 103. https://doi.org/10.1016/j.molcatb.2008.12.001

    Article  CAS  Google Scholar 

  14. Bagheri, M., Masteri-Farahani, M., and Ghorbani, M., J. Magn. Magn. Mater., 2013, vol. 327, p. 58. https://doi.org/10.1016/j.jmmm.2012.09.038

    Article  CAS  Google Scholar 

  15. Garkoti, C., Shabir, J., and Mozumdar, S., New J. Chem., 2017, vol. 41, p. 9291. https://doi.org/10.1039/C6NJ03985E

    Article  CAS  Google Scholar 

  16. Makosza, M., Pure Appl. Chem., 2000, vol. 72, p. 1399. https://doi.org/10.1351/pac200072071399

    Article  CAS  Google Scholar 

  17. Davarpanah, J. and Kiasat, A.R., Catal. Commun., 2013, vol. 42, p. 98. https://doi.org/10.1016/j.catcom.2013.07.040

    Article  CAS  Google Scholar 

  18. Ayashi, N., Fallah-Mehrjardi, M., and Kiasat, A.R., Russ. J. Org. Chem., 2017, vol. 53, p. 846. https://doi.org/10.1134/S1070428017060069

    Article  CAS  Google Scholar 

  19. Jain, Y., Kumari, M., Agarwal, M., and Gupta, R., Carbohydr. Res., 2019, vol. 482, article ID 107736. https://doi.org/10.1016/j.carres.2019.06.015

  20. Rezvani, M.A., Oghoulbeyk, Z.N., Khandan, S., and Mazzei, H.G., Polyhedron, 2020, vol. 177, article ID 114291. https://doi.org/10.1016/j.poly.2019.114291

  21. Mase, N. and Horibe, T., Org. Lett., 2013, vol. 15, p. 1854. https://doi.org/10.1021/ol400462d

    Article  CAS  PubMed  Google Scholar 

  22. Poor Heravi, M.R. and Piri, S., J. Chem., 2013, vol. 2013, article ID 652805. https://doi.org/10.1155/2013/652805

  23. Ogiwara, Y., Takahashi, K., Kitazawa, T., and Sakai, N., J. Org. Chem., 2015, vol. 80, p. 3101. https://doi.org/10.1021/acs.joc.5b00011

    Article  CAS  PubMed  Google Scholar 

  24. van Schijndel, J., Canalle, L.A., Molendijk, D., and Meuldijk, J., Green Chem. Lett. Rev., 2017, vol. 10, p. 404. https://doi.org/10.1080/17518253.2017.1391881

    Article  CAS  Google Scholar 

  25. Kakesh, N., Sayyahi, S., and Badri, R., C. R. Chim., 2018, vol. 21, p. 1023. https://doi.org/10.1016/j.crci.2018.09.009

    Article  CAS  Google Scholar 

  26. Shaterian, H.R., Arman, M., and Rigi, F., J. Mol. Liq., 2011, vol. 158, p. 145. https://doi.org/10.1016/j.molliq.2010.11.010

    Article  CAS  Google Scholar 

  27. Mochalov, S.S., Chasanov, M.I., Fedotov, A.N., and Zefirov, N.S., Chem. Heterocycl. Compd., 2011, vol. 47, p. 1105. https://doi.org/10.1007/s10593-011-0881-2

    Article  CAS  Google Scholar 

  28. Kühbeck, D., Saidulu, G., Reddy, K.R., and Díaz, D.D., Green Chem., 2012, vol. 14, p. 378. https://doi.org/10.1039/C1GC15925A

    Article  Google Scholar 

  29. Levchenko, K.S., Chudov, K.A., Zinoviev, E.V., Lyssenko, K.A., Fakhrutdinov, A.N., Demin, D.U., Poroshin, N.O., Shmelin, P.S., and Grebennikov, E.P., Tetrahedron Lett., 2019, vol. 60, p. 1505. https://doi.org/10.1016/j.tetlet.2019.04.050

    Article  CAS  Google Scholar 

  30. Tarade, K., Shinde, S., Sakate, S., and Rode, C., Catal. Commun., 2019, vol. 124, p. 81. https://doi.org/10.1016/j.catcom.2019.03.005

    Article  CAS  Google Scholar 

  31. Kiasat, A.R. and Davarpanah, J., J. Mol. Catal. A: Chem., 2013, vol. 373, p. 46. https://doi.org/10.1016/j.molcata.2013.03.003

    Article  CAS  Google Scholar 

  32. Amini, A., Sayyahi, S., Saghanezhad, S.J., and Taheri, N., Catal. Commun., 2016, vol. 78, p. 11. https://doi.org/10.1016/j.catcom.2016.01.036

    Article  CAS  Google Scholar 

  33. Kassaee, M.Z., Masrouri, H., and Movahedi, F., Appl. Catal., A, 2011, vol. 395, p. 28. https://doi.org/10.1016/j.apcata.2011.01.018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fallah-Mehrjardi.

Ethics declarations

The authors declare the absence of conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallah-Mehrjardi, M., Behjatmanesh-Ardakani, R. & Saidian, S. Magnetic Nanoparticle-Supported Basic Ionic Liquid: A Reusable Phase-Transfer Catalyst for Knoevenagel Condensation in Aqueous Medium. Russ J Org Chem 58, 144–151 (2022). https://doi.org/10.1134/S1070428022010201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022010201

Keywords:

Navigation