Log in

Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes (a Review): I. History of the Development of the Molecular Layering Method

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The history of the development of the molecular layering method is described, the fields and results of using the nanotechnology based on this method in various branches of industry in the past 20 years are analyzed, and the prospects for further development and commercialization of this method are evaluated. The first part of the review briefly describes the principal results of basic and experimental research in the field of the solid-state chemistry, including studies performed using the molecular deposition method in the former Soviet Union and in Russia, where this method was developed in the early 1960s. The main results obtained by researchers from other countries starting from the late 1970s are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Publication permission of St. Petersburg State Institute of Technology of August 31, 2021. Copyright 1987 St. Petersburg State Institute of Technology.

  2. Publication permission of St. Petersburg State Institute of Technology of August 31, 2021. Copyright 1992 St. Petersburg State Institute of Technology.

  3. Publication permission of AIP Publishing of July 26, 2021. Copyright 2013 AIP Publishing.

REFERENCES

  1. Aleskovskii, V.B., Core hypothesis and experience in preparation of some active solids, Doctoral Dissertation, Leningrad, 1952.

  2. Aleskovskii, V.B., Stekhiometriya i sintez tverdykh soedinenii (Stoichiometry and Synthesis of Solids), Leningrad: Nauka, 1976.

    Google Scholar 

  3. Aleskovskii, V.B., Khimiya nadmolekulyarnykh soedinenii (Chemistry of Supramolecular Compounds), St. Petersburg: Sankt-Peterb. Gos. Univ., 1996.

    Google Scholar 

  4. Patent FI 57975 C, publ. 1980; Patent US 4413022 A, publ. 1983; Patent SU 1085510 A3, Publ. 1984.

  5. Damyanov, D. and Mekhandzhiev, D., Izv. Khim., Bulg. Akad. Nauk, 1976, vol. 9, no. 2, pp. 294–303.

    CAS  Google Scholar 

  6. Öhlmann, G., IIzv. Khim., Bulg. Akad. Nauk., 1980, vol. 18, no. 1, pp. 48–64.

    Google Scholar 

  7. Suntola, T. and Hyvarinen, J., Annu. Rev. Mater. Sci., 1985, vol. 15, no. 1, pp. 177–195. https://doi.org/10.1146/annurev.ms.15.080185.001141

    Article  CAS  Google Scholar 

  8. Leskelä, M. and Ritala, M., Thin Solid Films, 2002, vol. 409, no. 1, pp. 138–146. https://doi.org/10.1016/S0040-6090(02)00117-7

    Article  Google Scholar 

  9. George, S.M., Chem. Rev., 2010, vol. 110, no. 1, pp. 111–131. https://doi.org/10.1021/cr900056b

    Article  PubMed  CAS  Google Scholar 

  10. Atomic Layer Deposition of Nanostructured Materials, Pinna, N. and Knez, M., Eds., Weinheim: Wiley–VCH, 2012.

    Google Scholar 

  11. Atomic Layer Deposition (ALD): Fundamentals, Characteristics and Industrial Applications, Valdez, J., Ed., Hauppauge, NY: Nova Science, 2015.

    Google Scholar 

  12. Pakkala, A. and Putkonen, M., Handbook of Deposition Technologies for Films and Coatings, William Andrew, 2010, pp. 364–391. https://doi.org/10.1016/B978-0-8155-2031-3.00008-9

    Article  Google Scholar 

  13. Malygin, A.A., Ross. Khim. Zh., 2013, vol. LVII, no. 6, pp. 7–20.

    Google Scholar 

  14. Kääriäinen, T., Cameron, D., Kääriäinen, M.-L., and Sherman, A., Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications, New York: Wiley, 2013.

    Book  Google Scholar 

  15. Johnson, R.W., Hultqvis, A., and Bent, S.F., Mater. Today, 2014, vol. 17, no. 5, pp. 236–246. https://doi.org/10.1016/j.mattod.2014.04.026

    Article  CAS  Google Scholar 

  16. Malygin, A.A., Nanomaterialy: svoistva i perspektivnye prilozheniya (Nanomaterials: Properties and Promising Applications), Yaroslavtsev, A.B., Ed., Moscow: Knizhnyi Mir, 2014, pp. 84–113.

    Google Scholar 

  17. Hu, L., Qi, W., and Li, Y., Nanotechnol. Rev., 2017, vol. 6, no. 6, pp. 527–547. https://doi.org/10.1515/ntrev-2017-0149

    Article  CAS  Google Scholar 

  18. Mackus, A.J., Schneider, J.R., MacIsaac, C., Baker, J.G., and Bent, S.F., Chem. Mater., 2018, vol. 31, no. 4, pp. 1142–1183. https://doi.org/10.1021/acs.chemmater.8b02878

    Article  CAS  Google Scholar 

  19. Oviroh, P.O., Akbarzadeh, R., Pan, D., Coetzee, R.A.M., and Jen, T.C., Sci. Technol. Adv. Mater., 2019, vol. 20, no. 1, pp. 465–496. https://doi.org/10.1080/14686996.2019.1599694

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cai, J., Han, X., Wang, X., and Meng, X., Matter, 2020, vol. 2, no. 3, pp. 587–630. https://doi.org/10.1016/j.matt.2019.12.026

    Article  Google Scholar 

  21. Nam, T. and Kim, H., J. Mater. Res., 2020, vol. 35, no. 7, pp. 656–680. https://doi.org/10.1557/jmr.2019.347

    Article  CAS  Google Scholar 

  22. Parsons, G.N., George, S.M., and Knez, M., Mater. Res. Soc. Bull., 2011, vol. 36, no. 11, pp. 865–871. https://doi.org/10.1557/mrs.2011.238

    Article  CAS  Google Scholar 

  23. Poodt, P., Cameron, D.C., Dickey, E., George, S.M., Kuznetsov, V., Parsons, G.N., Roozeboom, F., Sundaram, G., and Vermeer, A., J. Vac. Sci. Technol. A, 2012, vol. 30, no. 1, ID 010802. https://doi.org/10.1116/1.3670745

    Article  CAS  Google Scholar 

  24. Shin, S., Ham, G., Jeon, H., Park, J., Jang, W., and Jeon, H., Korean J. Mater. Res., 2013, vol. 23, no. 8, pp. 405–422. https://doi.org/10.3740/MRSK.2013.23.8.405

    Article  CAS  Google Scholar 

  25. Malygin, А.А., Маlkov, А.А., and Sosnov, E.A., Russ. Chem. Bull., 2017, vol. 66, no. 11, pp. 1939–1962. https://doi.org/10.1007/s11172-017-1971-9 

    Article  CAS  Google Scholar 

  26. Subramanian, A., Tiwale, N., and Nam, C.Y., JOM, 2019, vol. 71, no. 1, pp. 185–196. https://doi.org/10.1007/s11837-018-3141-4

    Article  Google Scholar 

  27. Leskelä, M. and Ritala, M., Angew. Chem. Int. Ed., 2003, vol. 42, no. 45, pp. 5548–5554. https://doi.org/10.1002/anie.200301652

    Article  CAS  Google Scholar 

  28. Ishikawa, K., Karahashi, K., Honda, M., Matsui, M., Chang, J.P., George, S.M., Kessels, W.M.M., Lee, H.J., Tinck, S., Um, J.H., Tatsumi, T., Higashi, S., and Kinoshita, K., Jpn. J. Appl. Phys., 2017, vol. 56, ID 06HA02. https://doi.org/10.7567/JJAP.56.06HA02

    Article  Google Scholar 

  29. Miikkulainen, V., Leskelä, M., Ritala, M., and Puurunen, R.L., J. Appl. Phys., 2013, vol. 113, no. 2, ID 021301. https://doi.org/10.1063/1.4757907

    Article  CAS  Google Scholar 

  30. Cremers, V., Puurunen, R.L., and Dendooven, J., Appl. Phys. Rev., 2019, vol. 6, no. 2, ID 021302. https://doi.org/10.1063/1.5060967

    Article  CAS  Google Scholar 

  31. Mackus, A.J.M., Bol, A.A., and Kessels, W.M.M., Nanoscale, 2014, vol. 6, no. 19, pp. 10941–10960. https://doi.org/10.1039/C4NR01954G

    Article  PubMed  CAS  Google Scholar 

  32. Parsons, G.N. and Clark, R.D., Chem. Mater., 2020, vol. 32, no. 12, pp. 4920–4953. https://doi.org/10.1021/acs.chemmater.0c00722

    Article  CAS  Google Scholar 

  33. Puurunen, R.L., J. Appl. Phys., 2005, vol. 97, no. 12, ID 121301. https://doi.org/10.1063/1.1940727

    Article  CAS  Google Scholar 

  34. Ponraj, J.S., Attolini, G., and Bosi, M., Crit. Rev. Solid State Mater. Sci., 2013, vol. 38, no. 3, pp. 203–233. https://doi.org/10.1080/10408436.2012.736886

    Article  CAS  Google Scholar 

  35. Yun, H.J., Kim, H., and Choi, B.J., Korean J. Mater. Res., 2019, vol. 29, no. 9, pp. 567–577. https://doi.org/10.3740/MRSK.2019.29.9.567

    Article  Google Scholar 

  36. King, D.M., Liang, X., and Weimer, A.W., Powder Technol., 2012, vol. 221, pp. 13–25. https://doi.org/10.1016/j.powtec.2011.12.020

    Article  CAS  Google Scholar 

  37. Adhikari, S., Selvaraj, S., and Kim, D.-H., Adv. Mater. Interfaces, 2018, vol. 5, no. 16, ID 1800581. https://doi.org/10.1002/admi.201800581

    Article  Google Scholar 

  38. Van Ommen, J.R. and Goulas, A., Mater. Today Chem., 2019, vol. 14, ID 100183. https://doi.org/10.1016/j.mtchem.2019.08.002

    Article  CAS  Google Scholar 

  39. Weimer, A.W., J. Nanopart. Res., 2019, vol. 21, no. 1, ID 9. https://doi.org/10.1007/s11051-018-4442-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Li, Z., Li, J., Liu, X., and Chen, R., Chem. Eng. Process., 2020, vol. 159, ID 108234. https://doi.org/10.1016/j.cep.2020.108234

    Article  CAS  Google Scholar 

  41. Cao, K., Cai, J., Shan, B., and Chen, R., Sci. Bull., 2020, vol. 65, no. 8, pp. 678–688. https://doi.org/10.1016/j.scib.2020.01.016

    Article  CAS  Google Scholar 

  42. Hu, Y., Lu, J., and Feng, H., RSC Adv., 2021, vol. 11, no. 20, pp. 11918–11942. https://doi.org/10.1039/D1RA00326G

    Article  CAS  Google Scholar 

  43. Zaera, F., J. Mater. Chem., 2008, vol. 18, no. 30, pp. 3521–3526. https://doi.org/10.1039/B803832E

    Article  CAS  Google Scholar 

  44. Atomic Layer Deposition for Semiconductors, Hwang, C.S., Ed., Boston, MA: Springer, 2014.

    Google Scholar 

  45. Yoshimura, T., Thin-Film Organic Photonics. Molecular Layering and Applications, Taylor & FrancisЖ Taylor & Francis, 2011.

    Google Scholar 

  46. Marichy, C. and Pinna, N., Adv. Mater. Interfaces, 2016, vol. 3, no. 21, ID 1600335. https://doi.org/10.1002/admi.201600335

    Article  CAS  Google Scholar 

  47. Atomic Layer Deposition in Energy Conversion Applications, Bachmann, J., Ed., Weinheim: Wiley–VCH, 2017.

    Google Scholar 

  48. Park, H.H., Nanomaterials, 2021, vol. 11, no. 1, ID 88. https://doi.org/10.3390/nano11010088

    Article  PubMed Central  CAS  Google Scholar 

  49. Yang, Z., Zhang, L., Liu, J., Adair, K., Zhao, F., Sun, Y., Wu, T., Bi, X., Amine, K., Lu, J., and Sun, X., Chem. Soc. Rev., 2021, vol. 50, no. 6, pp. 3889–3956. https://doi.org/10.1039/D0CS00156B

    Article  Google Scholar 

  50. O’Neill, B.J., Jackson, D.H.K., Lee, J., Canlas, C., Stair, P.C., Marshall, C.L., Elam, J.W., Kuech, T.F., Dumesic, J.A., and Huber, G.W., ACS Catal., 2015, vol. 5, no. 3, pp. 1804–1825. https://doi.org/10.1021/cs501862h

    Article  CAS  Google Scholar 

  51. Lu, J., Elam, J.W., and Stair, P.C., Surf. Sci. Rep., 2016, vol. 71, no. 2, pp. 410–472. https://doi.org/10.1016/j.surfrep.2016.03.003

    Article  CAS  Google Scholar 

  52. Sundberg, P. and Karppinen, M., Beilstein J. Nanotechnol., 2014, vol. 5, no. 1, pp. 1104–1136. https://doi.org/10.3762/bjnano.5.123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gregorczyk, K. and Knez, M., Prog. Mater. Sci., 2016, vol. 75, pp. 1–37. https://doi.org/10.1016/j.pmatsci.2015.06.004

    Article  CAS  Google Scholar 

  54. Meng, X., J. Mater. Chem. A, 2017, vol. 5, no. 35, pp. 18326–18378. https://doi.org/10.1039/C7TA04449F

    Article  CAS  Google Scholar 

  55. Ashurbekova, K., Ashurbekova, K., Botta, G., Yurkevich, O., and Knez, M., Nanotechnology, 2020, vol. 31, no. 34, ID 342001. https://doi.org/10.1088/1361-6528/ab8edb

    Article  PubMed  CAS  Google Scholar 

  56. Parsons, G.N., Elam, J.W., George, S.M., Haukka, S., Jeon, H., Kessels, W.M.M., Leskela, M., Poodt, P., Ritala, M., and Rossnagel, S.M., J. Vac. Sci. Technol. A, 2013, vol. 31, no. 5, ID 050818. https://doi.org/10.1116/1.4816548

    Article  CAS  Google Scholar 

  57. Malygin, A.A., Drozd, V.E., Malkov, A.A., and Smirnov, V.M., Chem. Vap. Deposition, 2015, vol. 21, nos. 10–12, pp. 216–240. https://doi.org/10.1002/cvde.201502013

    Article  CAS  Google Scholar 

  58. Demmin, J.C., Solid State Technol., 2001, vol. 44, no. 1, pp. 70–72.

    Google Scholar 

  59. Malygin, A.A. and Smirnov, V.M., Solid State Technol., 2002, vol. 45, no. 3, ID 14.

    Google Scholar 

  60. Ahvenniemi, E., Akbashev, A.R., Ali, S., Bechelany, M., Berdova, M., Boyadjiev, S., Cameron, D.C., Chen, R., Chubarov, M., Cremers, V., Devi, A., Drozd, V., Elnikova, L., Gottardi, G., Grigoras, K., Hausmann, D.M., Hwang, Ch.S., Jen, Sh.-H., Kallio, T., Kanervo, J., Khmelnitskiy, I., Kim, Do Han, Klibanov, L., Koshtyal, Yu., Krause, A.O.I., Kuhs, J., Karkkanen, I., Kaariainen, M.-L., Kaariainen, T., Lamagna, L., Lapicki, A.A., Leskela, M., Lipsanen, H., Lyytinen, J., Malkov, A., Malygin, A., Mennad, A., Militzer, Ch., Molarius, J., Norek, M., Ozgit-Akgun, C., Panov, M., Pedersen, H., Piallat, F., Popov, G., Puurunen, R.L., Rampelberg, G., Ras, R.H.A., Rauwel, E., Roozeboom, F., Sajavaara, T., Salami, H., Savin, H., Schneider, N., Seidel, T.E., Sundqvist, J., Suyatin, D.B., Torndahl, T., van Ommen, J.R., Wiemer, C., Ylivaara, O.M.E., and Yurkevich, O., J. Vac. Sci. Technol. A, 2017, vol. 35, no. 1, ID 010801. https://doi.org/10.1116/1.4971389

    Article  CAS  Google Scholar 

  61. Aarik, J., Akbashev, A.R., Bechelany, M., Becker, J.S., Berdova, M., Cameron, D., Drozd, V.E., Dubourdieu, C., Elam, J., Elliott, S., Gottardi, G., Grigoras, K., Kanervo, J.M., Koshtyal, Yu., Kaariainen, M.-L., Kaariainen, T., Lamagra, L., Malkov, A., Malygin, A., Molarius, J., Nikkola, J., Ozgit-Akgun, C., Pedersen, H., Puurunen, R.L., Pyymaki Perros, A., Ras, R.H.A., Roozeboom, F., Sajavaara, T., Savin, H., Seidel, T.E., Sundberg, P., Sundqvist, J., Tallarida, M., van Ommen, J.R., Wiemer, C., and Ylivaara, O.M.E., Abstracts of Papers, 14th Int. Conf. on Atomic Layer Deposition (ALD 2014), Kyoto, 2014, p. 169.

  62. Aarik, J., Akbashev, A.R., Bechelany, M., Becker, J.S., Berdova, M., Cameron, D., Drozd, V.E., Dubourdieu, C., Elam, J., Elliott, S., Gottardi, G., Grigoras, K., Kanervo, J.M., Koshtyal, Yu., Kaariainen, M.-L., Kaariainen, T., Lamagra, L., Malkov, A., Malygin, A., Molarius, J., Nikkola, J., Ozgit-Akgun, C., Pedersen, H., Puurunen, R.L., Pyymaki Perros, A., Ras, R.H.A., Roozeboom, F., Sajavaara, T., Savin, H., Seidel, T.E., Sundberg, P., Sundqvist, J., Tallarida, M., van Ommen, J.R., Wiemer, C., and Ylivaara, O.M.E., Abstracts of Papers, 14th Int. Conf. on Atomic Layer Deposition (ALD 2014), Kyoto, 2014, p. 170.

  63. Aarik, J., Aav, J., Ahvenniemi, E., Akbashev, A.R., Ali, S., Bechelany, M., Berdova, M., Bodalyov, I., Boyadjiev, S., Cameron, D., Chekurov, N., Chen, R., Chubarov, M., Cremers, V., Devi, A., Drozd, V.E., Elnikova, L., Gottardi, G., Goulas, A., Grigoras, K., Hausmann, D., Hwang, Ch.S., Jen, Sh.-H., Junige, M., Kallio, T., Kanervo, J., Khmelnitskiy, I., Kim, D.H., Klibanov, L., Koshtyal, Yu., Krause, O., Kuhs, Ja., Kärkkänen, I., Kääriäinen, M.-L., Kääriäinen, T.O., Lamagna, L., Łapicki, A., Leskelä, M., Lipsanen, H., Malkov, A., Malygin, A., Mattelaer, F., Mennad, A., Militzer, Ch., Molarius, Jy., Norek, M., Ozgit-Akgun, C., Panov, M., Pedersen, H., Peña, L.F., Piallat, F., Popov, G., Puurunen, R.L., Perros, A.P., Rampelberg, G., Ras, R.H.A., Rauwel, E., Roozeboom, F., Sajavaara, T., Salami, H., Savin, H., Schneider, N., Seidel, Th.E., Sundberg, P., Sundqvist, J., Suyatin, D., Tallarida, M., Törndahl, T., Utriainen, M., van Ommen, J.R., Waechtler, Th., Weckman, T., Wiemer, C., Yim, J., Ylivaara, O.M.E., and Yurkevich, O., Abstracts of Papers, EuroCVD 22–Baltic ALD 16 Conf., Luxembourg, 2019, pp. 1–13.

  64. Puurunen, R.L., ECS Trans., 2018, vol. 86, no. 6, pp. 3–17. https://doi.org/10.1149/08606.0003ecst

    Article  CAS  Google Scholar 

  65. Parsons, G.N., Elam, J.W., George, S.M., Haukka, S., Jeon, H., Kessels, W.M.M., Leskela, M., Poodt, P., Ritala, M., and Rossnagel, S.M., J. Vac. Soc. Technol. A, 2020, vol. 38, no. 3, ID 037001. https://doi.org/10.1116/6.0000143

    Article  CAS  Google Scholar 

  66. Aleskovskii, V.B., J. Appl. Chem. USSR, 1974, vol. 47, no. 10, pp. 2207–2217.

    Google Scholar 

  67. Aleskovskii, V.B., Vestn. Akad. Nauk SSSR, 1975, vol. 45, no. 6, pp. 48–52.

    Google Scholar 

  68. Aleskovskii, V.B., Voprosy khimicheskoi kinetiki, kataliza i reaktsionnoi sposobnosti (Problems of Chemical Kinetics, Catalysis, and Reactivity), Moscow: Akad. Nauk SSSR, 1955.

    Google Scholar 

  69. Aleskovskii, V.B., Some Relationships of Reactions of Macromolecular Compounds with Low-Molecular-Mass Compounds, Leningrad: Leningr. Elektrotekh. Inst., 1963.

    Google Scholar 

  70. Kol’tsov, S.I., Abstracts of Papers, Nauchno-tekhnicheskaya konferentsiya Leningradskogo tekhnologicheskogo instituta im. Lensoveta (Scientific and Technical Conf. of the Leningrad Lensovet Inst. of Technology), Leningrad: Leningr. Lensovet Inst. of Technol., 1963, p. 27.

  71. Aleskovskii, V.B. and Kol’tsov, S.I., Abstracts of Papers, Nauchno-tekhnicheskaya konferentsiya Leningradskogo tekhnologicheskogo instituta im. Lensoveta Scientific and Technical Conf. of the Leningrad Lensovet Inst. of Technology), Leningrad: Leningr. Lensovet Inst. of Technol., 1965, p. 67.

  72. Kol’tsov, S.I. and Aleskovskii, V.B., Abstracts of Papers, Nauchno-tekhnicheskaya konferentsiya Leningradskogo tekhnologicheskogo instituta im. Lensoveta (Scientific and (Scientific and Technical Conf. of the Leningrad Lensovet Inst. of Technology), Leningrad: Leningr. Lensovet Inst. of Technol. 1967, pp. 13–15.

  73. Aleskovskii, V.B., Khimiya tverdykh veshchestv (Chemistry of Solids), Moscow: Vysshaya Shkola, 1978.

    Google Scholar 

  74. Kol’tsov, S.I., Synthesis of Solids by Molecular Layering, Doctoral Dissertation, Leningrad, 1971.

  75. Kol’tsov, S.I., Sostav i khimicheskoe stroenie tverdykh veshchestv (Composition and Chemical Structure of Solids), Leningrad: Leningrad: Leningr. Lensovet Inst. of Technol., 1987.

    Google Scholar 

  76. Kol’tsov, S.I., Reaktsii molekulyarnogo naslaivaniya (Molecular Layering Reactions), St. Petersburg: Sankt-Peterb. Tekhnol. Inst., 1992.

    Google Scholar 

  77. Kol’tsov, S.I. and Aleskovskii, V.B., Silikagel’, ego stroenie i khimicheskie svoistva (Silica Gel, Its Structure and Chemical Properties), Leningrad: Goskhimizdat, 1963.

    Google Scholar 

  78. Kol’tsov, S.I. and Aleskovskii, V.B., J. Phys. Chem. USSR, 1967, vol. 41, no. 3, pp. 336–337.

    Google Scholar 

  79. Kol’tsov, S.I. and Aleskovskii, V.B., J. Phys. Chem. USSR, 1968, vol. 42, no. 5, pp. 630–632.

    Google Scholar 

  80. Shevyakov, A.M., Kuznetsova, G.N., and Aleskovskii, V.B., Khimiya vysokotemperaturnykh materialov (Chemistry of High-Temperature Materials), Leningrad: Nauka, 1967, pp. 149–155.

    Google Scholar 

  81. Kol’tsov, S.I., Aleskovskii, V.B., Kuznetsova, G.N., and Roslyakova, N.G., Inorg. Mater., 1967, vol. 3, no. 8, pp. 1318–1319.

    Google Scholar 

  82. Kol’tsov, S.I., J. Appl. Chem. USSR, 1969, vol. 42, no. 5, pp. 975–979.

    Google Scholar 

  83. Kol’tsov, S.I., Volkova, A.N., and Aleskovskii, V.B., J. Appl. Chem. USSR, 1969, vol. 42, no. 5, pp. 980–984.

    Google Scholar 

  84. Sveshnikova, G.V., Kol’tsov, S.I., and Aleskovskii, V.B., J. Appl. Chem. USSR, 1970, vol. 43, no. 2, pp. 432–434.

    Google Scholar 

  85. Sveshnikova, G.V., Kol’tsov, S.I., and Aleskovskii, V.B., J. Appl. Chem. USSR, 1970, vol. 43, no. 5, pp. 1155–1157.

    Google Scholar 

  86. Kol’tsov, S.I., J. Appl. Chem. USSR, 1965, vol. 38, no. 6, p. 1352.

    Google Scholar 

  87. Kol’tsov, S.I., Kuznetsova, G.N., and Aleskovskii, V.B., Inorg. Mater., 1967, vol. 3, no. 5, pp. 800–801.

    Google Scholar 

  88. Kol’tsov, S.I., Kuznetsova, G.N., and Aleskovskii, V.B., J. Appl. Chem. USSR, 1967, vol. 40, no. 12, pp. 2644–2646.

    Google Scholar 

  89. Volkova, A.N., Kol’tsov, S.I., and Aleskovskii, V.B., Inorg. Mater., 1969, vol. 5, no. 1, pp. 178–179.

    CAS  Google Scholar 

  90. Volkova, A.N., Kol’tsov, S.I., and Aleskovskii, V.B., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1969, vol. 12, no. 3, pp. 247–249.

    CAS  Google Scholar 

  91. Kol’tsov, S.I. and Aleskovskii, V.B., J. Appl. Chem. USSR, 1969, vol. 42, no. 9, pp. 1838–1842.

    Google Scholar 

  92. Kol’tsov, S.I., Volkova, A.N., and Aleskovskii, V.B., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1969, vol. 12, no. 12, pp. 1633–1636.

    Google Scholar 

  93. Kol’tsov, S.I., J. Appl. Chem. USSR, 1970, vol. 43, no. 9, pp. 1976–1979.

    Google Scholar 

  94. Rachkovskii, R.R., Kol’tsov, S.I., and Aleskovskii, V.B., J. Inorg. Chem. USSR, 1970, vol. 15, no. 11, pp. 1646–1647.

    Google Scholar 

  95. Kopylov, V.B., Volkova, A.N., Kol’tsov, S.I., Smirnov, V.M., and Aleskovskii, V.B., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1972, vol. 15, no. 6, pp. 957–959.

    CAS  Google Scholar 

  96. Volkova, A.N., Malygin, A.A., Smirnov, V.M., Kol’tsov, S.I., and Aleskovskii, V.B., J. Gen. Chem. USSR, 1972, vol. 42, no. 7, pp. 1422–1424.

    Google Scholar 

  97. Kol’tsov, S.I., Malygin, A.A., Volkova, A.N., and Aleskovskii, V.B., J. Phys. Chem. USSR, 1973, vol. 47, no. 4, pp. 558–560.

    Google Scholar 

  98. Malygin, A.A., Volkova, A.N., Kol’tsov, S.I., and Aleskovskii, V.B., J. Gen. Chem. USSR, 1973, vol. 43, no. 11, pp. 1426–1429.

    Google Scholar 

  99. Ukhova, T.V., Malygin, A.A., Volkova, A.N., Kol’tsov, S.I., and Aleskovskii, V.B., J. Phys. Chem. USSR, 1974, vol. 48, no. 6, pp. 1565–1566.

    CAS  Google Scholar 

  100. Ukhova, T.V., Volkova, A.N., Kol’tsov, S.I., and Aleskovskii, V.B., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1974, vol. 17, no. 6, pp. 795–797.

    Google Scholar 

  101. Kol’tsov, S.I., Kopylov, V.B., Smirnov, V.M., and Aleskovskii, V.B., J. Appl. Chem. USSR, 1976, vol. 49, no. 3, pp. 525–528 .

    Google Scholar 

  102. Stepanova, N.A., Smirnov, V.M., Kol’tsov, S.I., and Aleskovskii, V.B., J. Appl. Chem. USSR, 1977, vol. 50, no. 2, p. 450 .

    Google Scholar 

  103. Pak, V.N., J. Phys. Chem. USSR, 1976, vol. 50, no. 6, pp. 1404–1407 .

    CAS  Google Scholar 

  104. Kukharskaya, E.V., Makarskaya, V.M., Tsvetkova, M.N., Koltsov, S.I., and Voronkov, M.G., J. Appl. Chem. USSR, 1980, vol. 53, no. 9, pp. 1546–1548 .

    Google Scholar 

  105. Tsvetkova, M.N., Malygin, A.A., and Koltsov, S.I., J. Appl. Chem. USSR, 1980, vol. 53, no. 6, pp. 952–954 .

    Google Scholar 

  106. Koltsov, S.I., Malkov, A.A., Smirnov, E.P., and Aleskovskii, V.B., J. Appl. Chem. USSR, 1976, vol. 49, no. 6, pp. 1277–1280.

    Google Scholar 

  107. Koval’kov, V.I., Smirnov, E.P., Kol’tsov, S.I., and Aleskovskii, V.B., J. Gen. Chem. USSR, 1976, vol. 46, no. 9, pp. 2069–2070.

    Google Scholar 

  108. Smirnov, E.P., Gordeev, S.K., Kol’tsov, S.I., and Aleskovskii, V.B., J. Appl. Chem. USSR, 1978, vol. 51, no. 11, pp. 2451–2455 .

    Google Scholar 

  109. Smirnov, E.P., Gordeev, S.K., Kol’tsov, S.I., and Aleskovskii, V.B., J. Appl. Chem. USSR, 1979, vol. 52, no. 1, pp. 176–178 .

    Google Scholar 

  110. Malkov, A.A., Kol’tsov, S.I., Ivin, V.D., Smirnov, E.P., and Aleskovskii, V.B., J. Appl. Chem. USSR, 1976, vol. 49, no. 7, pp. 1650–1652.

    Google Scholar 

  111. USSR Inventor’s Certificate 801538 A1, Publ. 1980.

  112. Barsova, V.V., Kol’tsov, S.I., Malygin, A.A., and Trifonov, S.A., Plast. Massy, 1981, no. 7, p. 59.

    Google Scholar 

  113. Kol’tsov, S.I., Drozd, V.E., Redova, T.A., and Aleskovskii, V.B., Dokl. Phys. Chem., 1977, vol. 235, pp. 794–796.

    Google Scholar 

  114. Eremeeva, M.A., Nechiporenko, A.P., Kuznetsova, G.N., Kol’tsov, S.I., and Aleskovskii, V.B., J. Appl. Chem. USSR, 1974, vol. 47, no. 10, pp. 2390–2391 .

    Google Scholar 

  115. Kol’tsov, S.I., Garshin, A.P., Malygin, A.A., and Karaseva, M., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.,, 1978, vol. 21, no. 2, pp. 168–171.

    Google Scholar 

  116. Pak, V.N., Ventov, N.G., and Kol’tsov, S.I., Theor. Exp. Chem., 1974, vol. 10, no. 5, pp. 711–713 .

    CAS  Google Scholar 

  117. Malygin, A.A., Reactions of Vanadium, Chromium, and Phosphorus Oxychlorides with Silica Gel as Molecular Layering Reactions, Cand. Sci. Dissertation, Leningrad, 1973.

  118. Volkova, A.N., Malygin, A.A., Kol’tsov, S.I., and Aleskovskii, V.B., J. Gen. Chem. USSR, 1975, vol. 44, no. 1, pp. 3–7 .

    Google Scholar 

  119. Volkova, A.N., Malygin, A.A., Kol’tsov, S.I., and Aleskovskii, V.B., J. Inorg. Chem. USSR, 1975, vol. 20, no. 10, pp. 2695–2698 .

    CAS  Google Scholar 

  120. Malygin, A.A., Volkova, A.N., Kol’tsov, S.I., and Aleskovskii, V.B., J. Gen. Chem. USSR, 1976, vol. 46, no. 10, pp. 2085–2088 .

    Google Scholar 

  121. Malygin, A.A., Kol’tsov, S.I., and Aleskovskii, V.B., J. Gen. Chem. USSR, 1980, vol. 50, no. 12, pp. 2121–2123 .

    Google Scholar 

  122. Aleskovskii, V.B., Drozd, V.E., Gubaidullin, V.I., and Romanychev, A.I., Dokl. Akad. Nauk SSSR, Khimiya, 1986, vol. 291, no. 1, pp. 136–139 .

    CAS  Google Scholar 

  123. Khalif, V.A., Aptekar’, E.L., Krylov, O.V., and Öhlmann, G., Kinet. Katal., 1977, vol. 18, no. 4, pp. 1055–1059.

    CAS  Google Scholar 

  124. Ermakov, Yu.I., Zakharov, V.A., and Kuznetsov, B.N., Zakreplennye kompleksy na okisnykh nositelyakh v katalize (Immobilized Complexes on Oxide Supports in Catalysis), Novosibirsk: Nauka, 1980.

    Google Scholar 

  125. Bliznyakov, G.M. and Petrov, K., Docl. Bulg. Akad. Nauk., 1974, vol. 27, no. 3, pp. 365–368.

    Google Scholar 

  126. Hanke, W., Bienert, R., and Jerschkewitz, H.-G., Z. Anorg. Allg. Chem., 1975, vol. 414, no. 2, pp. 109–129. https://doi.org/10.1002/zaac.19754140203

    Article  CAS  Google Scholar 

  127. Öhlmann, G., Z. Chem., 1984, vol. 24, no. 5, pp. 161–169. https://doi.org/10.1002/zfch.19840240502

    Article  Google Scholar 

  128. Suntola, T., Mater. Sci. Rep., 1989, vol. 4, no. 5, pp. 261–312. https://doi.org/10.1016/S0920-2307(89)80006-4

    Article  CAS  Google Scholar 

  129. Putkonen, M. and Niinistö, L., Precursor Chemistry of Advanced Materials. CVD, ALD and Nanoparticles, Fischer, R.A., Ed., Berlin: Springer, 2005. https://doi.org/10.1007/b136145

    Book  Google Scholar 

  130. Sneh, O., Clark-Phelps, R.B., Londergan, A.R., Winkler, J., and Seidel, T.E., Thin Solid Films, 2002, vol. 402, nos. 1–2, pp. 248–261. https://doi.org/10.1016/S0040-6090(01)01678-9

    Article  CAS  Google Scholar 

  131. Niinistoe, L., Paeivaesaari, J., Niinistoe, J., Putkonen, M., and Nieminen, M., Phys. Status Solidi A, 2004, vol. 201, no. 7, pp. 1443–1452. https://doi.org/10.1002/pssa.200406798

    Article  CAS  Google Scholar 

  132. Ylilammi, M., J. Electrochem. Soc., 1995, vol. 142, no. 7, pp. 2474–2479. https://doi.org/10.1149/1.2044323

    Article  CAS  Google Scholar 

  133. Skarp, J.I., Soininen, P.J., and Soininen, P.T., Appl. Surf. Sci., 1997, vol. 112, pp. 251–254. https://doi.org/10.1016/S0169-4332(96)01000-8

    Article  CAS  Google Scholar 

  134. Hart, J.., Lenway, S.A., and Murtha, T., A history of Electroluminescent Sisplays, Bloomington, IN: Indiana Univ., 1999.

    Google Scholar 

  135. Patent FI 52359 C, Publ. 1977; Patent US 4058430 A, Publ. 1977; Patent SU 810085 A3, Publ. 1981.

  136. Aidla, A.K. and Tammik, A.-A. A., Uchen. Zap. Tartusk. Univ., 1983, issue 655, pp. 120–129.

    Google Scholar 

  137. USSR Inventor’s Certificate 997795 A1, Publ. 1983.

  138. USSR Inventor’s Certificate 1219132 А, Publ. 1986.

  139. USSR Inventor’s Certificate 1344400 А2, Publ. 1987.

  140. USSR Inventor’s Certificate 1551648 A1, Publ. 1990.

  141. Malygin, A.A., Khimiya i tekhnologiya neorganicheskikh materialov (Chemistry and Technology of Inorganic Materials), Stavropol: RTP VNIIL, 1982, issue 23, pp. 24–28.

  142. USSR Inventor’s Certificate 1018710 A, Publ. 1983.

  143. Dergachev, V.F., Kol’tsov, S.I., Malkov, A.A., and Malygin, A.A., Tekhnologiya aviatsionnogo priboro- i agregatostroeniya (Technology of Aviation Instrument- and Aggregate-Making), Moscow: MAP, 1984, issue 2, pp. 50–52.

  144. Zorin, V.Ya., Lushkina, T.L., Malygin, A.A., and Shevchenko, G.K., Elektron. Prom-st., 1992, no. 3, pp. 51–54.

    Google Scholar 

  145. Lystsov, A.I. and Shcherbin, N.I., Lakokras. Mater. Ikh Primen., 1982, no. 6, pp. 14–16.

    Google Scholar 

  146. Raaijmakers, I.J., ECS Trans., 2011, vol. 41, no. 2, pp. 3–17. https://doi.org/10.1149/1.3633649

    Article  CAS  Google Scholar 

  147. USSR Inventor’s Certificate 1359261 A1, Publ. 1987.

  148. Kol’tsov, S.I., Kucherov, S.V., Dergachev, V.F., Malygin, A.A., Protod’yakonov, I.O., and Yulenets, Yu.P., Khim. Neft. Mashinostr., Nauchno-Tekh. Ref. Sb., Moscow: MKhP, 1983.

    Google Scholar 

  149. Tolmachev, V.A., J. Appl. Chem. USSR, 1982, vol. 55, no. 6, pp. 1298–1299 .

    Google Scholar 

  150. Tolmachev, V.A. and Okatov, M.A., Sov. J. Opt. Technol., 1983, vol. 50, no. 11, pp. 706–708 .

    Google Scholar 

  151. Romanychev, A.I., Russ. J. Appl. Chem., 1992, vol. 65, no. 12, pp. 2672–2676 .

    CAS  Google Scholar 

  152. Kol’tsov, S.I., Gromov, V.K., and Aleskovskii, V.B., Ellipsometriya – metod issledovaniya poverkhnosti (Ellipsometry as Surface Investigation Method), Rzhanov, A.V., Ed., Novosibirsk: Nauka, 1983.

    Google Scholar 

  153. Gromov, V.K. and Kol’tsov, S.I., Ellipsometriya – metod issledovaniya poverkhnosti (Ellipsometry as Surface Investigation Method), Rzhanov, A.V., Ed., Novosibirsk: Nauka, 1983.

    Google Scholar 

  154. Kol’tsov, S.I., Yakovlev, A.S., and Bukhalov, L.L., Poverkhn. Fiz., Khim., Mekh., 1992, no. 5, pp. 75–81.

    Google Scholar 

  155. Koshtyal, Y.M., Malkov, A.A., and Malygin, A.A., Russ. J. Gen. Chem., 2011, vol. 81, no. 1, pp. 41–48. https://doi.org/10.1134/S1070363211010075 .

    Article  CAS  Google Scholar 

  156. Dorofeev, V.P., Sosnov, E.A., and Malygin, A.A., Poverkhn. Rentgen., Sinkhrotron., Neitron. Issled., 2006, no. 2, pp. 55–60.

    Google Scholar 

  157. Marin, E., Lanzutti, A., Andreatta, F., Lekka, M., Guzman, L., and Fedrizzi, L., Corros. Rev., 2009, vol. 29, nos. 5–6, pp. 191–208. https://doi.org/10.1515/CORRREV.2011.010

    Article  CAS  Google Scholar 

  158. Kääriäinen, M.-L., Kääriäinen, T.O., and Cameron, D.C., Thin Solid Films, 2009, vol. 517, no. 24, pp. 6666–6670. https://doi.org/10.1016/j.tsf.2009.05.001

    Article  CAS  Google Scholar 

  159. Lanza, M., Materials, 2014, vol. 7, no. 3, pp. 2155–2182. https://doi.org/10.3390/ma7032155 

    Article  PubMed  PubMed Central  Google Scholar 

  160. Liu, R., Han, L., Huang, Zh., Ferrer, I.M., Smets, A.H.M., Zeman, M., Brunschwig, B.S., and Lewis, N.S., Thin Solid Films, 2015, vol. 586, pp. 28–34. https://doi.org/10.1016/j.tsf.2015.04.018

    Article  CAS  Google Scholar 

  161. Wang, W.-N., Wu, F., Myung, Y., Niedzwiedzki, D.M., Im, H.S., Park, J., Banerjee, P., and Biswas, P., ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 10, pp. 5685–5692. https://doi.org/10.1021/am508590j

    Article  PubMed  CAS  Google Scholar 

  162. Edy, R., Zhao, Y., Huang, G.S., Shi, J.J., Zhang, J., Solovev, A.A., and Mei, Y., Prog. Nat. Sci.: Mater. Int., 2016, vol. 26, no. 5, pp. 493–497. https://doi.org/10.1016/j.pnsc.2016.08.010

    Article  CAS  Google Scholar 

  163. Yersak, A.S., Lewis, R.J., Tran, J., and Lee, Y.-Ch., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 27, pp. 17622–17630. https://doi.org/10.1021/acsami.6b03606

    Article  PubMed  CAS  Google Scholar 

  164. Piltaver, I.K., Peter, R., Šarić, I., Salamon, K., Badovinac, I.J., Koshmak, K., Nannarone, S., Marion, I.D., and Petravić, M., Appl. Surf. Sci., 2017, vol. 419, pp. 564–572. https://doi.org/10.1016/j.apsusc.2017.04.146

    Article  CAS  Google Scholar 

  165. Zhuiykov, S., Hyde, L., Hai, Zh., Akbari, M.K., Kats, E., Detavernier, Ch., Xue, Ch., and Xu, H., Appl. Mater. Today, 2017, vol. 6, pp. 44–53. https://doi.org/10.1016/j.apmt.2016.12.004

    Article  Google Scholar 

  166. Huang, Y., Liu, L., Zhao, W., and Chen, Y., Thin Solid Films, 2017, vol. 624, pp. 101–105. https://doi.org/10.1016/j.tsf.2017.01.015

    Article  CAS  Google Scholar 

  167. Lee, N., Choi, H., Park, H., Choi, Y., Yuk, H., Lee, J., and Jeon, H., Nanotechnology, 2020, vol. 31, no. 26, ID 265604. https://doi.org/10.1088/1361-6528/ab8041

    Article  PubMed  CAS  Google Scholar 

  168. Sosnov, E.A. and Kochetkova, A.S., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2018, vol. 12, no. 6, pp. 1310–1322. https://doi.org/10.1134/S102745101901018X 

    Article  CAS  Google Scholar 

  169. Pak, V.N., Kol’tsov, S.I., and Aleskovskii, V.B., Theor. Exp. Chem., 1973, vol. 9, no. 4, pp. 567–569.

    CAS  Google Scholar 

  170. Pak, V.N., J. Phys. Chem USSR, 1976, vol. 50, no. 6, pp. 1404–1407.

    CAS  Google Scholar 

  171. Sosnov, E.A. Malkov, A.A., and Malygin, A.A., Russ. J. Phys. Chem. A, 2009, vol. 83, no. 4, pp. 642–648. https://doi.org/10.1134/S0036024409040219 

    Article  CAS  Google Scholar 

  172. Sosnov, E.A. and Malkov, A.A., Optical Spectroscopy: Technology, Properties and Performance, Tomozeiu, N., Ed., New York, USA: Nova Science, 2014.

    Google Scholar 

  173. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 6, pp. 1176–1182. https://doi.org/10.1134/S10703632100602 

    Article  CAS  Google Scholar 

  174. Malkov, A.A., Kukushkina, Yu.A., Sosnov, E.A., and Malygin, A.A., Inorg. Mater., 2020, vol. 56, no. 12, pp. 1234–1241. https://doi.org/10.1134/S0020168520120122 

    Article  CAS  Google Scholar 

Download references

Funding

The review preparation was supported by the Russian Foundation for Basic Research (project no. 20-13-50088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sosnov.

Ethics declarations

A.A. Malygin is the Deputy Editor-in-Chief of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry. The other authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 8, pp. 22–37, January, 2021 https://doi.org/10.31857/S0044461821080028

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosnov, E.A., Malkov, A.A. & Malygin, A.A. Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes (a Review): I. History of the Development of the Molecular Layering Method. Russ J Appl Chem 94, 1022–1037 (2021). https://doi.org/10.1134/S1070427221080024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221080024

Keywords:

Navigation