Log in

Chemical Features and Therapeutic Applications of Curcumin (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Curcumin, a component of the “Golden Spice” turmeric, has been recognized for its medicinal importance since ancient times. It can be isolated from the rhizomes of Curcuma Longa, which is a member of the ginger family (Zingiberaceae). It has been used to treat various diseases due to its anti-cancer, anti-oxidant, anti-bacterial, anti-inflammatory, anti-viral, and anti-arthritic properties. However, due to its poor solubility and low bioavailability, its pharmaceutical applications are hindered. Advances have been made for its delivery techniques in order to maximize its absorption by the human body. Herein, we have provided the recent literature on the structural features and various therapeutic applications of curcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Ibàñez, M.D. and Blàzquez, M.A., Plants, 2020, vol. 10, p. 44. https://doi.org/10.3390/plants10010044

    Article  CAS  PubMed Central  Google Scholar 

  2. Ramadhany, P., Witono, J.R., and Putri, O., Mater. Sci. Eng., 2020, vol. 742, p. 012023. https://doi.org/10.1088/1757-899X/742/1/012023

    Article  CAS  Google Scholar 

  3. Gupta, S.C., Kismali, G., and Aggarwal, B.B., Biofactors, 2013, vo.39, p. 2. https://doi.org/10.1002/biof.1079

  4. Aggarwal, B.B. and Harikumar, K.B., Int. J. Biochem. Cell Biol., 2009, vol. 41, p. 40. https://doi.org/10.1016/j.biocel.2008.06.010

    Article  CAS  PubMed  Google Scholar 

  5. Gupta, S.C., Patchva, S., and Aggarwal, B.B., AAPS J., 2013, vol. 15, p. 195. https://doi.org/10.1208/s12248-012-9432-8

    Article  CAS  PubMed  Google Scholar 

  6. Aggarwal, B.B., Kumar, A., and Bharti, A.C., Anticancer Res., 2003, vol. 23, p. 363.

    CAS  PubMed  Google Scholar 

  7. Khwaja, S., Fatima, K., Hassanain, M., Behera, C., Kour, A., Singh, A., Luqman, S., Sarkar, J., Chanda, D., Shanker, K., Gupta, A.K., Mondhe, D.M., and Negi, A.S., Eur. J. Med. Chem., 2018, vol. 151, p. 51. https://doi.org/10.1016/j.ejmech.2018.03.063

    Article  CAS  PubMed  Google Scholar 

  8. Al-Amiery, A.A., Kadhum, A.A.H., Obayes, H.R., and Mohamad, A.B., Bioinorg. Chem. Appl., 2013, vol. 2013, p. 1. https://doi.org/10.1155/2013/354982

    Article  CAS  Google Scholar 

  9. Wezgowiec, J., Tsirigotis-Maniecka, M., Saczko, J., Wieckiewicz, M., and Wilk, K.A., Molecules, 2021, vol. 26, p. 6056. https://doi.org/10.3390/molecules26196056

  10. Khayyal, M.T., El-Hazek, R.M., El-Sabbagh, W.A., Frank, J., Behnam, D., and Abdel-Tawab, M., Nutrition, 2018, vol. 54, p. 189. https://doi.org/10.1016/j.nut.2018.03.055

  11. Panahi, Y., Fazlolahzadeh, O., Atkin, S.L., Majeed, M., Butler, A.E., Johnston, T.P., and Sahebkar, A., J. Cell Physiol., 2019, vol. 234, p. 1165. https://doi.org/10.1002/jcp.27096

    Article  CAS  PubMed  Google Scholar 

  12. Si, G.F., Zhou, Y., and Wang, J.F., Russ. J. Coord. Chem., 2021, vol. 47, p. 66. https://doi.org/10.1134/S1070328420110081

    Article  CAS  Google Scholar 

  13. Altundag, E.M., Toprak, K., Sanlıtürk, G., Güran, M., Özbilenler, C., Kerküklü, N.R., Yılmaz, A.M., and Yalçın, S.A., Anticancer Agents Med. Chem., 2021, vol. 21, p. 1301. https://doi.org/10.2174/1871520620666201006141317

  14. Payton, F., Sandusky, P., and Alworth, W.L., J. Nat. Prod., 2007, vol. 70, p. 143. https://doi.org/10.1021/np060263s

    Article  CAS  PubMed  Google Scholar 

  15. Jovanovic, S.V., Steenken, S., Boone, C.W., and Simic, M.G., J. Am. Chem. Soc., 1999, vol. 121, p. 9677. https://doi.org/10.1021/ja991446m

    Article  CAS  Google Scholar 

  16. Jagannathan, R., Abraham, P.M., and Poddar, P., J. Phys. Chem. B, 2012, vol. 116, p. 14533. https://doi.org/10.1021/jp3050516

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Y.-J., Pan, M.-H., Cheng, A.-L., Lin, L.-I., Ho, Y.-S., Hsieh, C.-Y., and Lin, J.-K., J. Pharm. Biomed. Anal.,1997, vol. 15, p. 1867. https://doi.org/10.1016/s0731-7085(96)02024-9

  18. Griesser, M., Pistis, V., Suzuki, T., Tejera, N., Pratt, D. A., and Schneider, C., J. Biol. Chem. 2011, vol. 286, p. 1114. https://doi.org/10.1074/jbc.M110.178806

  19. Tonnesen, H.H. and Karlsen, J., Z. Lebensm. Unters. Forch., 1985, vol. 180, p. 132. https://doi.org/10.1007/BF01042637

    Article  Google Scholar 

  20. Khurana, A. and Ho, C.T., J. Liq. Chromatogr., 1988, vol. 11, p. 2295. https://doi.org/10.1080/01483918808067200

    Article  CAS  Google Scholar 

  21. Schneider, C., Gordon, O.N., Edwards, R.L., and Luis, P. B., J. Agric. Food Chem., 2015, vol. 63, p. 7606. https://doi.org/10.1021/acs.jafc.5b00244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gordon, O.N. and Schneider, C., Trends Mol. Med., 2012, vol. 18, p. 361. https://doi.org/10.1016/j.molmed.2012.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, L., Hutzen, B., Zuo, M., Ball, S., Deangelis, S., Foust, E., Pandit, B., Ihnat, M.A., Shenoy, S.S., Kulp, S., Li, P.-K., Li, C., Fuchs, J., and Lin, J., Cancer Res., 2010, vol. 70, p. 2445. https://doi.org/10.1158/0008-5472

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nagaraju, G.P., Benton, L., Bethi, S.R., Shoji, M., and El-Rayes, B.F., Int. J. Cancer, 2019, vol. 145, p. 10. https://doi.org/10.1002/ijc.31867

    Article  CAS  PubMed  Google Scholar 

  25. Ireson, C.R., Jones, D.J.L., Orr, S., Coughtrie, M.W.H., Boocock, D.J., Williams, M.L., Farmer, P.B., Steward, W.P., and Gescher, A.J., Cancer Epidemiol. Biomark. Prev., 2002, p. 105.

  26. Prasad, S., Tyagi, A.K., and Aggarwal, B.B., Cancer Res. Treat., 2014, vol. 46, p. 2. https://doi.org/10.4143/crt.2014.46.1.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tomeh, M.A., Hadianamrei, R., and Zhao, X., Int. J. Mol. Sci., 2019, vol. 20, p. 1033. https://doi.org/10.3390/ijms20051033

    Article  CAS  PubMed Central  Google Scholar 

  28. Chattopadhyay, I., Biswas, K., Bandyopadhyay, U., and Banerjee, R.K., Curr. Sci., 2004, vol. 87, p. 44.

    CAS  Google Scholar 

  29. Cao, Y.-K., Li, H.-J., Song, Z.-F., Li, Y., and Huai, Q.-Y., Molecules, 2014, vol. 19, p. 16349. https://doi.org/10.3390/molecules191016349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiu, X., Du, Y., Lou, B., Zuo, Y., Shao, W., Huo, Y., Huang, J., Yu, Y., Zhou, B., Du, J., Fu, H., and Bu, X., J. Med. Chem., 2010, vol. 53, p. 8260. https://doi.org/10.1021/jm1004545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koo, H.-J., Shin, S., Choi, J.Y., Lee, K.-H., Kim, B.-T., and Choe, Y.S., Sci. Rep., 2015, vol. 5, p. 14205.. https://doi.org/10.1038/srep14205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakamura, K., Yasunaga, Y., Segawa, T., Ko, D., Moul, J.W., Srivastave, S., Rhim, J.S., Int. J. Oncol., 2002, vol. 21, p. 825. https://doi.org/10.3892/ijo.21.4.825

  33. Shi, Q., Shih, C.C.-Y., and Lee, K.H., Anticancer Agents Med. Chem, 2009, vol. 9, p. 904. https://doi.org/10.2174/187152009789124655

    Article  CAS  PubMed  Google Scholar 

  34. Pedersen, U., Rasmussen, P.B., and Lawesson, S.O., Liebigs Ann. Chem.,1985, vol. 8, p. 1557. https://doi.org/10.1002/jlac.198519850805

  35. Fuchs, J.R., Pandit, B., Bhasin, D., Etterr, J.P., Regan, N., Abdelhamid, D., Li, C., Lin, J., and Li, P.K., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 2065. https://doi.org/10.1016/j.bmcl.2009.01.104

    Article  CAS  PubMed  Google Scholar 

  36. Ohtsu,H., Itokawa, H., **ao, Z., Su, C.Y., Shih, C.C.Y., Chiang, T., Chang, E., Lee, Y., Chiu, S. Y., Chang, C., and Lee, K.H., Bioorg. Med. Chem., 2003, vol. 11, p. 5083. https://doi.org/10.1016/j.bmc.2003.08.029

  37. Lin, L., Shi, Q., Nyarko, A.K., Bastow, K.F., Wu, C.C., Su, C.Y., Shih, C.C.Y., and Lee, K.H., J. Med. Chem., 2006, vol. 49, p. 3963. https://doi.org/10.1021/JM051043Z

  38. Regard, J.B., Sato, I.T., and Coughlin, S.R., Cell, 2008, vol. 135, p. 561. https://doi.org/10.1016/j.cell.2008.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Min, P. , Kapoor, K., Ye, R., Smith, J.C., Baudry, J., and Quarles, L.D., Mol. Nutr. Food Res., 2018, vol. 62, p. 1. https://doi.org/10.1371/journal.pone.0195980

    Article  CAS  Google Scholar 

  40. Naoki, H., Arahori, Y., OKuyama, M., Luis, P.B., Joseph, A.I., Kitakaze, T., Goshima, N., Schneider, C., Inui, H., and Yamaji, R., Biochem. Biophys. Res. Commun., 2022, vol. 595, p. 41. https://doi.org/10.1016/j.bbrc.2022.01.075

    Article  CAS  Google Scholar 

  41. Anand, P., Kunnumakkara, A.B., Newmann, R.A., and Aggarwal, B.B., Mol. Pharmaceutics, 2007, vol. 4, p. 807. https://doi.org/10.1021/mp700113r

    Article  CAS  Google Scholar 

  42. Maiti, P., Manna, J., Thammathong, J., Evans, B., Dubey, K.D., Banerjee, S., and Dunbar, G.L., Antioxidants, 2021, vol. 10, p. 1592. https://doi.org/10.3390/antiox10101592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lai, Y., Yan, Y., Liao, S., Li, Y., Ye, Y., Liu, N., Zhao, F., and Xu, P., Arch. Pharm. Res., 2020, vol. 43, p. 489. https://doi.org/10.1007/s12272-020-01230-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liang, Y., Zhao, J., Zou, H., Zhang, J., and Zhang, T., Food Funct., 2021, vol. 12, p. 10667. https://doi.org/10.1039/d1fo02002a

    Article  CAS  PubMed  Google Scholar 

  45. Dong, H.-H., Wang, Y.-H., and Peng, X.-M., Chem. Biol. Drug Des., 2021, vol. 97, p. 1079. https://doi.org/10.1111/cbdd.13827

  46. Yu, H., Shi, K., Liu, D., and Huang, Q., Food Chemistry, 2012, vol. 131, p. 48. https://doi.org/10.1016/j.foodchem.2011.08.027

    Article  CAS  Google Scholar 

  47. Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A., Fukuda, H., Hashimoto, T., Wada, H., Katansaka, Y., Kakeya, H., Fujita, M., Hasegawa, K., and Morimoto, T., Biol Pharm Bull., 2011, vol. 34, p. 660. https://doi.org/10.1248/bpb.34.660

    Article  CAS  PubMed  Google Scholar 

  48. Zlotogorski, A., Dayan, A., Dayan, D., Chaushu, G., Salo, T., and Vered, M., Oral Oncol., 2013, vol. 49, p. 187. https://doi.org/10.1016/j.oraloncology.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  49. Shehzad, A., Lee, J., and Lee, Y.S., Biofactors, 2013, vol. 39, p. 56. https://doi.org/10.1002/biof.1068

    Article  CAS  PubMed  Google Scholar 

  50. Hadiyal, S.D., Lalpara, J.N., and Dhaduk, B.B., Russ. J. Org. Chem., 2022, vol. 58, p. 368. https://doi.org/10.1134/S1070428022030150

    Article  CAS  Google Scholar 

  51. Lu, B., Ren, S.H., Lin, Y., Liu, W.Q., Wan, P.N., and Cui, H.F., J. Struct. Chem., 2021, vol. 62, p. 1123. https://doi.org/10.1134/S0022476621070179

    Article  CAS  Google Scholar 

  52. Luer, S., Troller, R., and Aebi, C., Nutrition and Cancer., 2012, vol. 64, p. 975. https://doi.org/10.1080/01635581.2012.713161

    Article  CAS  PubMed  Google Scholar 

  53. Harish, D.N., Vinutha, N., Krishna, P.V.V.S., Anusha Kumar, A.R., and Shaik, R., Int. J. Pharm. Chem. Sci., 2016, vol. 5, p. 231.

    CAS  Google Scholar 

  54. Nasri, H., Sahinfard, N., Rafieian, M., Rafieian, S., Shirzad, M., and Rafieian-kopaei, M., J. Herb. Med. Pharmacol., 2014, vol. 3, p. 5.

    CAS  Google Scholar 

  55. Lin, J. and Chen, A., Mol. Cell. Endocrinol., 2011, vol. 333, p. 160.

    Article  CAS  Google Scholar 

  56. Panahi, Y., Hosseini, M.S., Khalili, N., Naimi, E., Simental-Mendia, L.E., Majeed, M., and Sahebkar, A., Biomed. Pharmacother., 2016, vol. 82, p. 578. https://doi.org/10.1016/j.biopha.2016.05.037

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Z., Mu, W., Li, P., Liu, G., and Yang, J., Eur. J. Pharm. Sci., 2021, vol. 160, p. 105756. https://doi.org/10.1016/j.ejps.2021.105756

  58. Zhang,Y., Huang, L., Zhang, J., Nara De Souza Rastelli, A., Yang, J., and Deng, D., Front. Pharmacol., 2022, vol. 13. https://doi.org/10.3389/fphar.2022.808460

  59. Li, G., Duan, L., Yang, F., Yang, L., Deng, Y., Yu, Y., Xy, Y., and Zhang, Y., Phytother. Res., 2022, vol. 36, p. 1326. https://doi.org/10.1002/ptr.7391

    Article  CAS  PubMed  Google Scholar 

  60. Pillai, M.M., Dandia, H., Checker, R., Rokade, S., Sharma, D., and Tayalia, P., Nanomed. Nanotechnol., Biol., Med., 2022, vol. 40, p. 102495. https://doi.org/10.1016/j.nano.2021.102495

  61. Xu, G., Gu, Y., Yan, N., Li, Y., Sun, L., and Li, B., Environ. Toxicol., 2021, vol. 36, p. 2161. https://doi.org/10.1002/tox.23330

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, M., Zhang, X., Tian, T., Zhang, Q., Wen, Y., Zhu, J., **ao, D., Cui, W., and Lin, Y., Bioactive Materials, 2022, vol. 8, p. 368. https://doi.org/10.1016/j.bioactmat.2021.06.003

  63. Mohammadi, A., Colagar, A.H., Khorshidian, A., and Amini, S.M., Neuroimmunomodulation, 2022, vol. 29, p. 4. https://doi.org/10.1159/000517901

    Article  CAS  PubMed  Google Scholar 

  64. Wu, S., Rao, G., Wang, R., Pang, Q., Zhang, X., Huang, R., Li, T., Tang, Z., and Hu, L., Ecotoxicol. Environ. Safety, 2021, vol. 228. https://doi.org/10.1016/j.ecoenv.2021.112965

  65. Hacioglu, C., Kar, F., Kar, E., Kara, Y., and Kanbak, G., Biol. Trace Elem. Res., 2021, vol. 199, p. 3793. https://doi.org/10.1007/s12011-020-02511-2

    Article  CAS  PubMed  Google Scholar 

  66. Fikry, H., Saleh, L.A., and Gawad, S.A., CNS Neurosci Ther.,2022, vol. 28, p. 732. https://doi.org/10.1111/cns.13805

  67. He, H.-J., **ong, X., Zhou, S., Zhang, X.-R., Zhao, X., Chen, L., **e, C.-L., Neurochem. Int., 2022, vol. 155. https://doi.org/10.1016/j.neuint.2022.105297

  68. Darbinyan, L.V., Simonyan, K.V., Hambardzumyan, L.E., Manukyan, L.P., Badalyan, S.H., and Sarkisian, V.H., Metabolic Brain Disease, 2022, vol. 37, p. 1111. https://doi.org/10.1007/s11011-022-00941-6

    Article  CAS  PubMed  Google Scholar 

  69. Menon, V.P. and Sudheer, A.R., Adv. Exp. Med. Biol., 2007, vol. 595, p. 105. https://doi.org/10.1007/978-0-387-46401-5_3

    Article  PubMed  Google Scholar 

  70. Borra, S.K., Gurumurthy, p. , Mahendra, J., Jayamathi, K.M., Cherian, C.N., and Chand, R., J. Med. Plants Res., 2013, vol. 7, p. 2680. https://doi.org/10.5897/JMPR2013.5094

    Article  CAS  Google Scholar 

  71. Altundağ, E.M., Ӧzbilenler, C., Ustürk, S., Kerküklü, N.R., Afshani, M., and Yilmaz, E., J. Mol. Struct., 2021, vol. 1245. https://doi.org/10.1016/j.molstruc.2021.131107

  72. Esmaeili, S., Ghobadi, N., Nazari, D., Pourhossein, A., Rasouli, H., Adibi, H., and Khodarahmi, R., Med. Chem., 2020, vol. 16, p. 1. https://doi.org/10.2174/1573406416666200506083718

    Article  CAS  Google Scholar 

  73. Amuti, A., Wang, X., Zan, M., Lv, S., and Wang, Z., J. Mol. Liq., 2021, vol. 336. https://doi.org/10.1016/j.molliq.2021.116881

  74. Chen, Y.J., Huang, F., Zhang, M., and Shang, H.Y., J. Biomed. Biotechnol., 2010, vol. 2010, p. 302693. https://doi.org/10.1155/2010/302693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miao, L., Huang, F., Sun, Y.-Y., Jiang, W., Chen, Y.-J., and Zhang, M., J. Oral Rehabil., 2022, vol. 49, p. 249. https://doi.org/10.1111/joor.13289

  76. Omidi, S., Rafiee, Z., and Kakanejadifard, A., Bioorg. Chem., 2021, vol. 116. https://doi.org/10.1016/j.bioorg.2021.105308

  77. Purushothaman, A., Rose, K.S.T., Jacob, J.M., Varatharaj, R., Shashikala, K., and Janardana, D., Food Chemistry, 2022, vol. 373, p. 131499. https://doi.org/10.1016/j.foodchem.2021.131499

    Article  CAS  PubMed  Google Scholar 

  78. Guo, L., Li, H., Fan, T., Ma, Y., and Wang, L., Life Sci., 2021, vol. 279, p. 119359. https://doi.org/10.1016/j.lfs.2021.119359

    Article  CAS  PubMed  Google Scholar 

  79. Salarbashi, D., Tafaghodi, M., Fathi, M., aboutorabzade, S.M., and Sabbagh, F., Food Sci. Nutrition, 2021, vol. 9, p. 6109. https://doi.org/10.1002/fsn3.2562

    Article  CAS  Google Scholar 

  80. Soni, V.K., Mehta, A., Ratre, Y.K., Chandra, V., Shukla, D., Kumar, A., and Vishvakarma, N.K., Front. Oncol., 2021, vol. 11, p. 738961. https://doi.org/10.3389/fonc.2021.738961

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rodrigues, F.C., Kumar, N.V.A., Hari, G., Pai, K.S.R., and Thakur, G., Chemical Papers, 2021, vol. 75, p. 5995. https://doi.org/10.1007/s11696-021-01775-9

    Article  CAS  Google Scholar 

  82. Elbadawy, M., Hayashi, K., Ayame, H., Ishihara, Y., Abugomaa, A., Shibutani, M., Hayashi, S-M., Hazama, S., Takenouvhi, H., Nakajima, M., Tsunedomi, R., Suzuki, N., Nagano, H., Shinohara, Y., Kaneda, M., Yamawaki, H., Usi, T., and Sasaki, K., Biomed. Pharmacother., 2021, vol. 142, p. 112043. https://doi.org/10.1016/j.biopha.2021.112043

    Article  CAS  PubMed  Google Scholar 

  83. Joice, A.A., Senthilkumar, p. , Jose, D., Pandiammal, S., Bashini, J. M., Munuswamy, E., and Satheesh, D., Int. J. Pharm. Sci. Rev. Res.,2022, vol. 72, p. 1. https://doi.org/10.47583/ijpsrr.2022.v72i01.001

  84. Chiu, Y.-J., Yang, J.-S., Tsai, F.-J., Chiu, H.-Y., Juan, Y.-N., Lo, Y.-H., and Chiang, J.-H., Environ. Toxicol., 2022, vol. 37, p. 868. https://doi.org/10.1002/tox.23450

    Article  CAS  PubMed  Google Scholar 

  85. Zhi, T.X., Liu, K.Q., Cai, K.Y., Zhao, Y.C., Li, Z.W., Wang, X., He, X.H., and Sun, X.Y., ChemMedChem., 2022, vol. 17, p. 1. https://doi.org/10.1002/cmdc.202100676

    Article  CAS  Google Scholar 

  86. Rossiter, S.E., Fletcher, M.H., and Wuest, M.W., Chem. Rev., 2017, vol. 117, p. 12415. https://doi.org/10.1021/acs.chemrev.7b00283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dai, C., Lin, J., Li, H., Shen, Z., Wang, Y., Velkov, T., and Shen, J., Antioxidants, 2022, vol. 11, p. 459. https://doi.org/10.3390/antiox11030459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Barros, C.H.N., Hiebner, D.W., Fulaz, S., Vitale, S., Quinn, L., and Casey, E., J. Nanonbiotechnol., 2021, vol. 19, p. 104. https://doi.org/10.1186/s12951-021-00851-2

  89. Rocha, O.B., do Carmo Silva, L., de Carvalho Junior, M.A.B., de Oliveira, A.A., de Almeida Soares, C.M., and Pereira, M., Braz. J. Microbiol., 2021, vol. 52, p. 1897. https://doi.org/10.1007/s42770-021-00548-6

  90. Wu, Y., Wang, K., Liu, Q., Liu, X., Mou, B., Lai, O.-M., Tan, C.-P., and Cheong, L.-Z., Food Chemistry, 2022, vol. 367, p. 130700. https://doi.org/10.1016/j.foodchem.2021.130700

    Article  CAS  PubMed  Google Scholar 

  91. Anbari, H., Maghsoudi, A., Hosseinpour, M., and Yazdian, F., Eng. Life Sci., 2022, vol. 22, p. 58. https://doi.org/10.1002/elsc.202100050

    Article  CAS  PubMed  Google Scholar 

  92. Mahmood, K., Zia, K.M., Zuber, M., Salman, M., and Anjum, M.N., Int. J. Biol. Macromol., 2015, vol. 81, p. 877. https://doi.org/10.1016/j.ijbiomac.2015.09.026

    Article  CAS  PubMed  Google Scholar 

  93. Szczeşna, W., Tsirigotis-Maniecka, M., Lamch, L., Szyk-Warszyήska, L., Zboiήska, E., Warzyήski, P., and Wilk, K.A., Molecules, 2022, vol. 27, p. 1415. https://doi.org/10.3390/molecules27041415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. El-Nahhal, I.M., Salem, J.K., Okal, H.Z.L., Kodeh, F.S., and Elmanama, A.A., J. Sol-Gel Sci. Technol., 2022, vol. 101, p. 370. https://doi.org/10.1007/s10971-021-05709-5

    Article  CAS  Google Scholar 

  95. Lara-Espinosa, J., Arce-Aceves, M.F., LopezTorres, M.O., Lozana-Ordaz, V., Mata-Espinosa, D., Barrios-Payan, J., Silva-Islas, C.A., Maldonado, P.D., Marquina-Castillo, B., and Hernandez-Pando, R., Int. J. Mol. Sci., 2022, vol. 23, p. 1964. https://doi.org/10.3390/ijms23041964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hu, Y., Qiu, C., McClements, D.J., Qin, Y., Long, J., Jiao, A., Li, X., Wang, J., and **, Z., Food Chemistry, 2022, vol. 376, p. 131869. https://doi.org/10.1016/j.foodchem.2021.131869

  97. Wang, Y., Li, Y., He, L., Mao, B., Chem, S., Martinez, V., Guo, X., Shen, X., Liu, B., and Li, C, Colloids and Surfaces B. Biointerfaces, 2021, vol. 203, p. 111756. https://doi.org/10.1016/j.colsurfb.2021.111756

    Article  CAS  PubMed  Google Scholar 

  98. Palla, C.A., Aguilera-Garrido, A., Carrin, M.E., Galisteo-Gonzalez, F., and Galvez-Ruiz, M.J., Food Chemistry, 2022, vol. 378, p. 132132. https://doi.org/10.1016/j.foodchem.2022.132132

  99. Kour, P., Afzal, S., Gani, A., Zargar, M.I., Tak, U.N., Rashid, S., and Dar, A.A., Food Chemistry, 2022, vol. 376, p. 131925. https://doi.org/10.1016/j.foodchem.2021.131925

    Article  CAS  Google Scholar 

  100. Jiang, T. and Charcosset, C., Food Chemistry, 2022, vol. 375, p. 131825. https://doi.org/10.1016/j.foodchem.2021.131825

    Article  CAS  PubMed  Google Scholar 

  101. Li, Z., Wang, Y., and Luo, Y., Colloids and Surfaces B. Biointerfaces, 2022,211,112334. https://doi.org/10.1016/j.colsurfb.2022.112334

  102. Sanchez, L.T., Pinzon, M.I., and Villa, C.C., Food Chemistry, 2022,371,131121. https://doi.org/10.1016/j.foodchem.2021.131121

  103. Ganta, S. and Amiji, M., Mol. Pharm., 2009, vol. 6, p. 928. https://doi.org/10.1021/mp800240j

    Article  CAS  PubMed  Google Scholar 

  104. Yaghoubi, F., Motlagh, N.S.H., Naghib, S.M., Haghiralsadat, F., Jaliani, H.Z., and Moradi, A., Sci. Rep., 2022, vol. 12, p. 1959. https://doi.org/10.1038/s41598-022-05793-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, Y., Wang, J., Rao, Z., Hu, J., Wang, Q., Sun, Y., Lei, X., Zhao, J., Zeng, K., Xu, Z., and Ming, J., Food Chemistry, 2022, vol. 378, p. 132091. https://doi.org/10.1016/j.foodchem.2022.132091

    Article  CAS  PubMed  Google Scholar 

  106. Khodei, A., Jahanmard, F., Hosseini, H.R.M., Bagheri, R., Dabbagh, A., Weinans, H., and Yavari, S.A., Bioactive Materials, 2022, vol. 11, p. 107. https://doi.org/10.1016/j.bioactmat.2021.09.028

    Article  CAS  Google Scholar 

  107. Alavijeh, R.K. and Akhbari, K., Colloids and Surfaces B. Biointerfaces, 2022, vol. 212, p. 112340. https://doi.org/10.1016/j.colsurfb.2022.112340

    Article  CAS  Google Scholar 

  108. Atiyah, N.A., Albayati, T.M., and Atiya, M.A., Adv. Powder Technol., 2022, vol. 33, p. 103417. https://doi.org/10.1016/j.apt.2021.103417

    Article  CAS  Google Scholar 

  109. Song, W., Muthana, M., Mukherjee, J., Falconer, R.J., Biggs, C.A., and Zhao, X., ACS Biomater. Sci. Eng., 2017, vol. 3, no. 6, p. 1027. https://doi.org/10.1021/acsbiomaterials.7b00153

  110. Thangapazham, R., Puri, A., Tele, S., Blumenthal, R., and Maheshwari, R.K., Int. J. Oncology, 2008, vol. 32, p. 1119.

    CAS  Google Scholar 

  111. Karewicz, A., Bielska, D., Gzyl-Malcher, B., Kepczynski, M., Lach, R., and Nowakowska, M., Colloids and Surfaces B. Biointerfaces, 2011, vol. 88, p. 231. https://doi.org/10.1016/j.colsurfb.2011.06.037

    Article  CAS  PubMed  Google Scholar 

  112. Karewicz, A., Bielska, D., Loboda, A., Gzyl-Malcher, B., Bednar, J., Jozkowicz, A., Dulak, J., and Nowakowska, M., Colloids and Surfaces B. Biointerfaces, 2013, vol. 109, p. 307. https://doi.org/10.1016/j.colsurfb.2013.03.059

    Article  CAS  PubMed  Google Scholar 

  113. Chaves, M.A., Baldino, L., Pinho, S.C., and Reverchon, E., J. Taiwan Inst. Chem. Eng., 2022, vol. 132, p. 104120. https://doi.org/10.1016/j.jtice.2021.10.020

    Article  CAS  Google Scholar 

  114. Lin, Y.-L., Liu, Y.-K., Tsai, N.-M., Hsieh, J.-H., Chen, C.-H., Lin, C.-M., and Liao, K.-W., Nanomed. Nanotechnol., Biol., Med., 2012, vol. 8, p. 318. https://doi.org/10.1016/j.nano.2011.06.011

  115. Fujita, K., Hiramatsu, Y., Minematsu, H., Somiya, M., Kuroda, S., Seno, M., and Hinuma, S., J. Nanotechnol., 2016, vol. 2016, p. 1. https://doi.org/10.1155/2016/7051523

    Article  CAS  Google Scholar 

  116. Gou, M., Men, K., Shi, H., **ang, M., Zhang, J., Song, J., Long, J., Wan, Y., Luo, F., Zhao, X., and Qian, Z., Nanoscale, 2011,3,1558. https://doi.org/10.1039/C0NR00758G

  117. Zanotto-Filho, A., Coradini, K., Braganhol, E., Schröder, R., de Oliveira, M.C., Simões-Pires, A.S., Battastini, A.M.O., Pohlmann, A.R., Guterres, S.S., Forcelini, C.M., Beck, R.C.R., and Moreira, J.C.F., Eur. J. Pharm. Biopharm., 2013, vol. 83, p. 156. https://doi.org/10.1016/j.ejpb.2012.10.019

    Article  CAS  PubMed  Google Scholar 

  118. Mangalathillam, S., Re**old, N.S., Nair, A., Lakshmanan, V.-K., Nair, S.V., and Jayakumar, R., Nanoscale, 2012, vol. 4, p. 239. https://doi.org/10.1039/C1NR11271F

    Article  CAS  PubMed  Google Scholar 

  119. Ma, Z., Yao, J., Wang, Y., Jia, J., Liu, F., and Liu, X, Food Hydrocolloids, 2022,125,107367. https://doi.org/10.1016/j.foodhyd.2021.107367

  120. Su, Y., Chen, Y., Zhang, L., Adhikari, B., Xu, B., Li, J., and Zheng, T., J. Sci. Food Agric., 2022, vol. 102, p. 2220. https://doi.org/10.1002/jsfa.11560

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Institute of Eminence, University of Delhi for providing financial support to strengthen our research and development. Aditi Arora and Sumit Kumar are thankful to CSIR, New Delhi, India for the award of Junior Research Fellowship. Sandeep Kumar is thankful to CSIR, New Delhi, India for the award of Shyama Prasad Mukherjee Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh Kumar or Ashok K. Prasad.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, A., Kumar, S., Kumar, S. et al. Chemical Features and Therapeutic Applications of Curcumin (A Review). Russ J Gen Chem 92, 1785–1805 (2022). https://doi.org/10.1134/S1070363222090201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222090201

Keywords:

Navigation