Log in

Single Phase Oxidation of Ferrimagnetic Grains as a Cause of L-Shaped Arai–Nagata Diagrams

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The experiments on the determination of paleointensity Banc of the Earth’s magnetic field by Thellier method on basalts of the Berd (Jurassic) and Paravakar (Cretaceous) collections sampled in the northeastern Armenia in 2006 revealed an anomalous behavior of the Arai–Nagata diagrams. The anomaly manifests itself by a sharp drop in the intensity of natural remanent magnetization (NRM) under heating of samples to about 400°C, which is accompanied by a very weak acquisition of partial thermoremanent magnetizations (pTRMs) in this temperature interval. The further increase in temperature leads to the opposite phenomenon—an unexpectedly sharp rise in pTRMs intensity with almost no decrease in NRM, which creates the L-shape of the Arai–Nagata diagram. A similar phenomenon of a steep decline during thermal demagnetization was also established for remanent saturation magnetization Mrs(T). We carried out a number of magnetomineralogical experiments from which we conclude that, consistent with the hypothesis suggested by (Kosterov and Prevot, 1998), the sharp drop in Mrs(T) and NRM(T) curves is caused by the transitions of the domain state from a metastable configuration to a more stable one. These transitions are initiated by the processes of single- and heterophase oxidations of primary titanomagnetites under the laboratory heating of samples to moderate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Belokon, V.I., Kochegura, V.V., and Sholpo, L.E., Metody paleomagnitnykh issledovanii gornykh porod (Methods for Paleomagnetic Studies of Rocks), Leningrad: Nedra, 1973.

  2. Bol’shakov, A.S. and Solodovnikov, G.M., On the intensity of the geomagnetic field in the Late Jurassic, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1980, no. 11, pp. 74–86.

  3. Bol’shakov, A.S. and Solodovnikov, G.M., On the intensity of the geomagnetic field in the Late Cretaceous, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1981, no. 10, pp. 58–68.

  4. Coe, R.S., The determination of paleointensities of the Earth’s magnetic field with special emphasize on mechanisms which could cause nonideal behavior in Thellier method, J. Geomagn. Geoelectr., 1967, vol. 19, no. 3, pp. 157–179.

    Article  Google Scholar 

  5. Coe, R.S., Grommé, C.S., and Mankinen, E.A., Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 1978, vol. 83, no. B4, pp. 1740–1756.

    Article  Google Scholar 

  6. Day, R., Fuller, M., and Schmidt, V.A., Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 1977, vol. 13, no. 4, pp. 260–267.

    Article  Google Scholar 

  7. Dunlop, D.J. and Özdemir, Ö., Rock Magnetism: Fundamentals and Frontiers, Cambridge: Cambridge Univ. Press, 1997.

    Book  Google Scholar 

  8. Fabian, K., Shcherbakov, V.P., and McEnroe, S.A., Measuring the Curie temperature, Geochem. Geophys. Geosyst., 2013, vol. 14, no. 4, pp. 947–961.

    Article  Google Scholar 

  9. Gapeev, A.K. and Gribov, S.K., Kinetics of single-phase oxidation of titanomagnetite, Phys. Earth Planet. Inter., 1990, vol. 63, nos. 1–2, pp. 58–65.

    Article  Google Scholar 

  10. Glevasskaya, A.M., Magnitnye mineraly i magnetizm vulkanitov (Magnetic Minerals and Magnetism of Volcanics), Kyiv: Naukova dumka, 1983.

  11. Kosterov, A. A. and Prévot, M., Possible mechanisms causing failure of Thellier palaeointensity experiments in some basalts, Geophys. J. Int., 1998, vol. 134, no. 2, pp. 554–572.

    Article  Google Scholar 

  12. Nagata, T., Rock Magnetism, Tokyo: Maruzen, 1961.

    Google Scholar 

  13. Nagata, T., Arai, Y., and Momose, K., Secular variation of the geomagnetic total force during the last 5000 years, J. Geophys. Res., 1963, vol. 68, no. 18, pp. 5277–5281.

    Article  Google Scholar 

  14. Nishitani, T. and Kono, M., Curie temperature and lattice constant of oxidized titanomagnetite, Geophys. J. Int., 1983, vol. 74, no. 2, pp. 585–600.

    Google Scholar 

  15. Petersen, N. and Vali, H., Observation of shrinkage cracks in ocean floor titanomagnetites, Phys. Earth Planet. Inter., 1987, vol. 46, no. 1–3, pp. 197–205.

    Article  Google Scholar 

  16. Prévot, M., Mankinen, E., Grommé, S., and Lecaille, A., High paleointensities of the geomagnetic field from thermomagnetic studies on rift valley pillow basalts from the Mid-Atlantic Ridge, J. Geophys. Res., 1983, vol. 88, no. B3, pp. 2316–2326.

    Article  Google Scholar 

  17. Richards, J.C.W., O’Donovan, J.B., Hauptman, Z., O’Reilly, W., and Creer, K.M., A magnetic study of titanomagnetite substituted by magnesium and aluminium, Phys. Earth Planet. Inter., 1973, vol. 7, no. 4, pp. 437–444.

    Article  Google Scholar 

  18. Shcherbakov, V.P. and Gribov, S.K., Theory of oxidation of titanomagnetite grains with a diffusion coefficient that sharply depends on the oxidation state, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1986, no. 4, pp. 105–112.

  19. Shcherbakov, V.P. and Fabian, K., On the determination of magnetic grain-size distributions of superparamagnetic particle ensembles using the frequency dependence of susceptibility at different temperatures, Geophys. J. Int., 2005, vol. 162, no. 3, pp. 736–746.

    Article  Google Scholar 

  20. Shcherbakov, V.P. and Fabian, K., Theory of low temperature deuteric oxidation and fracturing of titanomagnetite grains of ocean floor basalts, Geophys. J. Int. (in press).

  21. Shcherbakova, V.V., Shcherbakov, V.P., Zhidkov, G.V., Pavlov, V.E., and Vinogradov, Yu.K., Paleointensity Determination on the Cretaceous and Jurassic rocks of Armenia (preliminary results), in Mater. semin.: Paleomagnetizm i magnetizm gornykh porod: teoriya, praktika, eksperiment (Proc. Workshop: Paleomagnetism and Magnetism of Rocks: Theory, Practice, Experiment), Gapeev, A.K., Ed., Borok, 2007, Moscow: GEOS, 2007. pp. 186–191.

  22. Shcherbakova, V.V., Perrin, M., Shcherbakov, V.P., Pavlov, V.E., Ayvaz’yan, A., and Zhidkov, G.V., Rock magnetic and paleointensity results from Mesozoic baked contacts of Armenia, Earth, Planets Space, 2009, vol. 61, pp. 23–39.

    Article  Google Scholar 

  23. Stacey, F.D. and Banerjee, S.K., The Physical Principles of Rock Magnetism, Amsterdam: Elsevier, 1974.

    Google Scholar 

  24. Thellier, E. and Thellier, O., Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Geophys., 1959, vol. 15, pp. 285–376.

    Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 20-05-00215) and carried out in partial fulfillment of the State contract of the Institute of Physics of the Earth o the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Shcherbakov.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, V.P., Gribov, S.K., Aphinogenova, N.A. et al. Single Phase Oxidation of Ferrimagnetic Grains as a Cause of L-Shaped Arai–Nagata Diagrams. Izv., Phys. Solid Earth 56, 665–674 (2020). https://doi.org/10.1134/S1069351320050109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320050109

Keywords:

Navigation