Log in

Anticancer Activities of Piperazine Ringed Chalcone Compounds and In Silico Studies

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A new series of (E)-3-(substituted phenyl-1-(4-(piperazin-1-yl)phenyl)prop-2-en-1-one derivatives (I–XII) aiming to develop effective anticancer agents were synthesized. The anticancer activities of compound (I–XII) at 100, 50, 25 and 5 µM concentrations were investigated against HeLa (Human cervical cancer cells) and PC3 (Human prostate cancer cells) cancer cells by the BrdU ELISA assay. The anticancer activity results were compared with the standard compound 5-fluorouracil (5-FU). All molecules (except compound (II) for HeLa cancer cells and except compound (X) for the PC3 cell line) were found to be more active than 5-FU. Compound (XI) ((E)-1-(4-(piperazin-1-yl)phenyl)-3-(3-(trifluoromethoxy)phenyl)prop-2-en-1-one) showed high activity in both HeLa and PC3 cell lines, making it an ideal molecule candidate for binary interaction. Drug-likeness, pharmacokinetic properties, and physicochemical properties of all compounds (I–XII) were determined using SwissADME program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F., CA: Cancer J. Clin., 2021, vol. 71, pp. 209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Damyanov, C., Maslev, I., Pavlov, V., and Avramov, L., Ann Complement Altern Med., 2018, vol. 1, pp. 1–9.

    Google Scholar 

  3. Singh, S.P., Mishra, A., Shyanti, R.K., Singh, R.P., and Acharya, A., Biol. Trace Elem. Res., 2021, vol. 199, pp. 1316–1331. https://doi.org/10.1007/s12011-020-02255-z

    Article  CAS  PubMed  Google Scholar 

  4. Coates, A., Abraham, S., Kaye, S.B., Sowerbutts, T., Frewin, C., Fox, R., and Tattersall, M., Eur. J. Cancer., 1983, vol. 19, pp. 203–208. https://doi.org/10.1016/0277-5379(83)90418-2

    Article  CAS  Google Scholar 

  5. Karmous, I., Pandey, A., Haj, K.B., and Chaoui, A., Biol. Trace Elem. Res., 2020, vol. 196, pp. 330–342. https://doi.org/10.1007/s12011-019-01895-0

    Article  CAS  PubMed  Google Scholar 

  6. Szakács, G., Paterson, J.K., Ludwig, J.A., Booth-Genthe, C., and Gottesman, M.M., Nat. Rev. Drug Discov., 2006, vol. 5, pp. 219–234. https://doi.org/10.1038/nrd1984

    Article  CAS  PubMed  Google Scholar 

  7. Cai, Y., Luo, Q., Sun, M., and Corke, H., Life Sci., 2004, vol. 74, pp. 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cragg, G.M., and Newman, D.J., J. Ethnopharmacol., 2005, vol. 100, pp. 72–79. https://doi.org/10.1016/j.jep.2005.05.011

    Article  CAS  PubMed  Google Scholar 

  9. Yoon, J., Yoo, E.A., Kim, J.-Y., Pae, A.N., Rhim, H., Park, W.-K., Kong, J.Y., and Choo, H.-Y.P., Bioorg. Med. Chem., 2008, vol. 16, pp. 5405–5412. https://doi.org/10.1016/j.bmc.2008.04.023

    Article  CAS  PubMed  Google Scholar 

  10. Mahapatra, D.K., Asati, V., and Bharti, S.K., Eur. J. Med. Chem., 2015, vol. 92, pp. 839–865. https://doi.org/10.1016/j.ejmech.2015.01.051

    Article  CAS  PubMed  Google Scholar 

  11. Lee, Y.S., Lim, S.S., Shin, K.H., Kim, Y.S., Ohuchi, K., and Jung, S.H., Biol. Pharm. Bull., 2006, vol. 29, pp. 1028–1031. https://doi.org/10.1248/bpb.29.1028

    Article  CAS  PubMed  Google Scholar 

  12. Rizvi, S.U.F., Siddiqui, H.L., Johns, M., Detorio, M., and Schinazi, R.F., Med. Chem.Res., 2012, vol. 21, pp. 3741–3749. https://doi.org/10.1007/s00044-011-9912-x

    Article  CAS  Google Scholar 

  13. Israf, D., Khaizurin, T., Syahida, A., Lajis, N., and Khozirah, S., Mol. Immunol., 2007, vol. 44, pp. 673–679. https://doi.org/10.1016/j.molimm.2006.04.025

    Article  CAS  PubMed  Google Scholar 

  14. Kim, D.W., Curtis-Long, M.J., Yuk, H.J., Wang, Y., Song, Y.H., Jeong, S.H., and Park, K.H., Food Chem., 2014, vol. 153, pp. 20–27. https://doi.org/10.1016/j.foodchem.2013.12.026

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto, T., Yoshimura, M., Yamaguchi, F., Kouchi, T., Tsuji, R., Saito, M., Obata, A., and Kikuchi, M., Biosci. Biotechnol. Biochem., 2004, vol. 68, pp. 1706–1711. https://doi.org/10.1271/bbb.68.1706

    Article  CAS  PubMed  Google Scholar 

  16. Aoki, N., Muko, M., Ohta, E., and Ohta, S., J. Nat. Prod., 2008, vol. 71, pp. 1308–1310. https://doi.org/10.1021/np800187f

    Article  CAS  PubMed  Google Scholar 

  17. Birari, R.B., Gupta, S., Mohan, C.G., and Bhutani, K.K., Phytomedicine., 2011, vol. 18, pp. 795–801. https://doi.org/10.1016/j.phymed.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  18. Sashidhara, K.V., Palnati, G.R., Sonkar, R., Avula, S.R., Awasthi, C., and Bhatia, G., Eur. J. Med. Chem., 2013, vol. 64, pp. 422–431. https://doi.org/10.1016/j.ejmech.2013.04.026

    Article  CAS  PubMed  Google Scholar 

  19. Alsayed, S.S., Beh, C.C., Foster, N.R., Payne, A.D., Yu, Y., and Gunosewoyo, H., Curr. Mol. Med., 2019, vol. 12, pp. 27–49. https://doi.org/10.2174/1874467211666181025141114

    Article  CAS  Google Scholar 

  20. Sashidhara, K.V., Rao, K.B., Kushwaha, V., Modukuri, R.K., Verma, R., and Murthy, P., Eur. J. Med. Chem., 2014, vol. 81, pp. 473–480. https://doi.org/10.1016/j.ejmech.2014.05.029

    Article  CAS  PubMed  Google Scholar 

  21. Wang, M., Xu, S., Wu, C., Liu, X., Tao, H., Huang, Y., Liu, Y., Zheng, P., and Zhu, W., Bioorg. Med. Chem. Lett., 2016, vol. 26, pp. 5450–5454. https://doi.org/10.1016/j.bmcl.2016.10.029

    Article  CAS  PubMed  Google Scholar 

  22. Tomar, V., Bhattacharjee, G., Rajakumar, S., Srivastava, K., and Puri, S., Eur. J. Med. Chem., 2010, vol. 45, pp. 745­–751. https://doi.org/10.1016/j.ejmech.2009.11.022

    Article  CAS  PubMed  Google Scholar 

  23. Chen, M., Christensen, S.B., Blom, J., Lemmich, E., Nadelmann, L., Fich, K., Theander, T. G., and Kharazmi, A., Antimicrob. Agents Chemother., 1993, vol. 37, pp. 2550–2556. https://doi.org/10.1128/AAC.37.12.2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abdullah, M.I., Mahmood, A., Madni, M., Masood, S., and Kashif, M., Bioorg. Chem., 2014, vol. 54, pp. 31–37. https://doi.org/10.1016/j.bioorg.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  25. Lahtchev, K., Batovska, D., St P, P., Ubiyvovk, V., and Sibirny, A., Eur. J. Med. Chem., 2008, vol. 43, pp. 2220–2228. https://doi.org/10.1016/j.ejmech.2007.12.027

    Article  CAS  PubMed  Google Scholar 

  26. Sashidhara, K.V., Avula, S.R., Mishra, V., Palnati, G.R., Singh, L.R., Singh, N., Chhonker, Y.S., Swami, P., and Bhatta, R., Eur. J. Med. Chem., 2015, vol. 89, pp. 638–653. https://doi.org/10.1016/j.ejmech.2014.10.068

    Article  CAS  PubMed  Google Scholar 

  27. Le Bail, J.-C., Pouget, C., Fagnere, C., Basly, J.-P., Chulia, A.-J., and Habrioux, G., Life Sci., 2001, vol. 68, pp. 751–761. https://doi.org/10.1016/S0024-3205(00)00974-7

    Article  CAS  PubMed  Google Scholar 

  28. Luo, Y., Song, R., Li, Y., Zhang, S., Liu, Z.-J., Fu, J., and Zhu, H.-L., Bioorg. Med. Chem. Lett., 2012, vol. 22, pp. 3039–3043. https://doi.org/10.1016/j.bmcl.2012.03.080

    Article  CAS  PubMed  Google Scholar 

  29. Cho, S., Kim, S., **, Z., Yang, H., Han, D., Baek, N.-I., Jo, J., Cho, C.-W., Park, J.-H., and Shimizu, M., Biochem. Biophys. Res. Commun., 2011, vol. 413, pp. 637–642. https://doi.org/10.1016/j.bbrc.2011.09.026

    Article  CAS  PubMed  Google Scholar 

  30. Jamal, H., Ansari, W.H., and Rizvi, S. J., Fundam. Clin. Pharmacol., 2008, vol. 22, pp. 673–681. https://doi.org/10.1111/j.1472-8206.2008.00639.x

    Article  CAS  PubMed  Google Scholar 

  31. Sato, Y., He, J.-X., Nagai, H., Tani, T., and Akao, T., Biol. Pharm. Bull., 2007, vol. 30, pp. 145–149. https://doi.org/10.1248/bpb.30.145

    Article  CAS  PubMed  Google Scholar 

  32. de Campos-Buzzi, F., Padaratz, P., Meira, A.V., Corrêa, R., Nunes, R.J., and Cechinel-Filho, V., Molecules, 2007, vol. 12, pp. 896–906. https://doi.org/10.3390/12040896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ortolan, X.R., Fenner, B.P., Mezadri, T.J., Tames, D.R., Corrêa, R., and de Campos Buzzi, F., J. Cranio-Maxillo-Fac. Surg., 2014, vol. 42, pp. 520–524. https://doi.org/10.1016/j.jcms.2013.07.020

    Article  Google Scholar 

  34. O’Boyle, N.M., Ana, G., Kelly, P.M., Nathwani, S.M., Noorani, S., Fayne, D., Bright, S.A., Twamley, B., Zisterer, D.M., and Meegan, M.J., Org. Biomol. Chem., 2019, vol. 17, pp. 6184–6200. https://doi.org/10.1039/C9OB00558G

    Article  PubMed  Google Scholar 

  35. Khalaj, A., Adibpour, N., Shahverdi, A.R., and Daneshtalab, M., Eur. J. Med. Chem., 2004, vol. 39, pp. 699–705. https://doi.org/10.1016/j.ejmech.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  36. Upadhayaya, R.S., Sinha, N., Jain, S., Kishore, N., Chandra, R., and Arora, S.K., Bioorg. Med. Chem., 2004, vol. 12, pp. 2225–2238. https://doi.org/10.1016/j.bmc.2004.02.014

    Article  CAS  PubMed  Google Scholar 

  37. Chaudhary, P., Kumar, R., Verma, A.K., Singh, D., Yadav, V., Chhillar, A.K., Sharma, G., and Chandra, R., Bioorg. Med. Chem., 2006, vol. 14, pp. 1819–1826. https://doi.org/10.1016/j.bmc.2005.10.032

    Article  CAS  PubMed  Google Scholar 

  38. Broekkamp, C., Leysen, D., Peeters, B., and Pinder, R., J. Med. Chem., 1995, vol. 38, pp. 4615–4633. https://doi.org/10.1021/jm00023a001

    Article  CAS  PubMed  Google Scholar 

  39. Naito, H., Ohsuki, S., Atsumi, R., Minami, M., Mochizuki, M., Hirotani, K., Kumazawa, E., and Ejima, A., Chem. Pharm. Bull., 2005, vol. 53, pp. 153–163. https://doi.org/10.1248/cpb.53.153

    Article  CAS  Google Scholar 

  40. Mao, Z., Zheng, X., Qi, Y., Zhang, M., Huang, Y., Wan, C., and Rao, G., Rsc Adv., 2016, vol. 6, pp. 7723–7727. https://doi.org/10.1039/C5RA20197G

    Article  CAS  Google Scholar 

  41. Koziel, R., Szczepanowska, J., Magalska, A., Piwocka, K., Duszynski, J., and Zablocki, K., J. Physiol. Pharmacol., 2010, vol. 61, p. 233.

    CAS  PubMed  Google Scholar 

  42. Aranha, O., Grignon, R., Fernandes, N., McDonnell, T.J., Wood, D.P., and Sarkar, F.H., Int. J. Oncol., 2003, vol. 22, pp. 787–794. https://doi.org/10.3892/ijo.22.4.787

    Article  CAS  PubMed  Google Scholar 

  43. Miclau, T., Edin, M.L., Lester, G.E., Lindsey, R.W., and Dahners, L.E., J. Orthopaedic Res., 1998, vol. 16, pp. 509–512. https://doi.org/10.1002/jor.1100160417

    Article  CAS  Google Scholar 

  44. Somekh, E., Douer, D., Shaked, N., and Rubinstein, E., J. Pharmacol. Exp. Ther., 1989, vol. 248, pp. 415–418.

    CAS  PubMed  Google Scholar 

  45. Gan, F.-F., Kaminska, K.K., Yang, H., Liew, C.-Y., Leow, P.-C., So, C.-L., Tu, L.N., Roy, A., Yap, C.-W., and Kang, T.-S., Antioxid. Redox Signal., 2013, vol. 19, pp. 1149–1165. https://doi.org/10.1089/ars.2012.4909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lawrence, N.J., McGown, A.T., Ducki, S., and Hadfield, J.A., Anti-Cancer Drugs. Des., 2000, vol. 15, pp. 135–141.

    CAS  Google Scholar 

  47. Ducki, S., Anti-Cancer Agents Med. Chem., 2009, vol. 9, p. 336. https://doi.org/10.2174/1871520610909030336

    Article  CAS  Google Scholar 

  48. Gabrielson, S.W., JMLA., 2018, vol. 106, p. 588. https://doi.org/10.5195/jmla.2018.515

    Article  PubMed Central  Google Scholar 

  49. Zhang, S., Luo, Y., He, L.-Q., Liu, Z.-J., Jiang, A.-Q., Yang, Y.-H., and Zhu, H.-L., Bioorg. Med. Chem., 2013, vol. 21, pp. 3723–3729. https://doi.org/10.1016/j.bmc.2013.04.043

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, S., Ren, J., Liu, M., Ren, L., Liu, Y., and Gong, P., Bioorg. Chem., 2014, vol. 57, pp. 30–42. https://doi.org/10.1016/j.bioorg.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  51. Waterhouse, R.N., Mol. Imaging Biol., 2003, vol. 5, pp. 376–389. https://doi.org/10.1016/j.mibio.2003.09.014

    Article  PubMed  Google Scholar 

  52. Sicak, Y., Med. Chem. Res., 2021, vol. 30, pp. 1557–1568. https://doi.org/10.1007/s00044-021-02756-z

    Article  CAS  Google Scholar 

  53. Sicak, Y., Turk. J. Chem., 2022, vol. 46, pp. 665–676. https://doi.org/10.55730/1300-0527.3358

    Article  CAS  Google Scholar 

  54. Aktar, B.S.K., Oruç-Emre, E.E., Demirtaş, I., Yaglioglu, A.S., Guler, C., Adem, S., and Iyidoğan, A.K., J. Mol. Struct., 2017, vol. 1149, pp. 632–639. https://doi.org/10.1016/j.molstruc.2017.08.014

    Article  CAS  Google Scholar 

  55. Ahmed, M.F., Santali, E.Y., and El-Haggar, R., J. Enzyme Inhib. Med. Chem., 2021, vol. 36, pp. 308–319. https://doi.org/10.1080/14756366.2020.1861606

    Article  CAS  Google Scholar 

  56. Prasad, Y. and Rahaman, S., Int. J. Chem. Sci., 2008, vol. 6, pp. 2038–2044.

    CAS  Google Scholar 

  57. Aktar, B.S.K., Oruç-Emre, E.E., Demirtaş, I., Yaglioglu, A.Ş., Iyidogan, A.K., Güler, Ç., and Adem, Ş., Turk. J. Chem., 2018, vol. 42, pp. 482–492. https://doi.org/10.3906/kim-1705-28

    Article  CAS  Google Scholar 

  58. Aktar, B.S.K., Sıcak, Y., Tok, T.T., Oruc-Emre, E.E., Yağlıoğlu, A.Ş., Iyidoğan, A.K., Öztürk, M., and Demirtaş, I., J. Mol. Struct., 2020, vol. 1211, p. 128059. https://doi.org/10.1016/j.molstruc.2020.128059

    Article  CAS  Google Scholar 

  59. Yaglioglu, A.S., Yaglioglu, M.S., Tosyalıoglu, N., Adem, S., and Demirtas, I., S. Afr. J. Bot., 2022, vol. 151, pp. 600–613. https://doi.org/10.1016/j.sajb.2022.08.005

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks to Prof. Dr. Ayse Sahin Yaglioglu for her help in the construction and interpretation of anticancer tests.

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

BSKA is responsible for the experiments and writing of this article.

Corresponding author

Correspondence to Bedriye Seda Kurşun Aktar.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Abbreviations: HeLa, human cervical cancer cells; PC3, human prostate cancer cells; 5-FU, 5-fluorouracil; NMR, nuclear magnetic resonance; FTIR, fourier transformed infrared spectroscopy; TLC, thin-layer chromatography; MgSO4, magnesıum sulfate; TPSA, topological polar surface area.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aktar, B.S.K. Anticancer Activities of Piperazine Ringed Chalcone Compounds and In Silico Studies. Russ J Bioorg Chem 49, 1023–1033 (2023). https://doi.org/10.1134/S1068162023050096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023050096

Keywords:

Navigation