Log in

The Underlying Mechanism of Soil Aggregate Stability by Fungi and Related Multiple Factor: A Review

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil aggregation is considered as an essential ecosystem process mediated by soil organism. In this review, the hyphae network, binding agents, and exudates of fungi traits involved in soil aggregation and stability are summarized, as well as root architecture, microbial community and other indirect driver. Then, a better understanding of variable influencing factors on fungi traits and their interaction is explored. In the field, fungi inoculums, no-tillage, fertilization, and herbicides could change soil aggregation and stability via fungi traits. This current state of knowledge is helpful for resolve worldwide deterioration in soil quality, as a result of high-intensity agronomic practice, human disturbance, and environmental global changes and so on. Although fungi used for eco-engineering measures in the field has been not fully understood, the recovery and development of fungi will be one of more promising and cost-effective efforts to maintain soil structure, via fungi inoculums or land management practice. Meanwhile, better trait-based analytical approaches and an intermediate step should be developed before transferring laboratory results to application of the field in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. E. Ambriz, A. Baez-Perez, J. M. Sánchez-Yáñez, P. Moutoglis, and J. Villegas, “FraxinusGlomusPisolithus symbiosis: plant growth and soil aggregation effects,” Pedobiologia 53, 369–373 (2010). https://doi.org/10.1016/j.pedobi.2010.07.001

    Article  Google Scholar 

  2. M. V. Barbosa, D. de Fátima Pedroso, N. Curi, and M. A. C. Carneiro, “Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates?” Agric. Sci. 43, 003519 (2019). https://doi.org/10.1590/1413-7054201943003519

    Article  Google Scholar 

  3. A. Bast, W. Wilcke, F. Graf, P. Lüscher, and H. Gärtner, “Does mycorrhizal inoculation improve plant survival, aggregate stability, and fine root development on a coarse-grained soil in an alpine eco-engineering field experiment?” J. Geophys. Res.: Biogeosci. 121, 2158–2171 (2016). https://doi.org/10.1002/2016JG003422

    Article  Google Scholar 

  4. A. Bast, W. Wilcke, F. Graf, P. Lüscher, and H. Gärtner, “The use of mycorrhiza for eco-engineering measures in steep alpine environments: effects on soil aggregate formation and fine-root development,” Earth Surf. Process. Landforms 39, 1753–1763 (2014). https://doi.org/10.1002/esp.3557

    Article  Google Scholar 

  5. B. N. Bearden and L. Petersen, “Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol,” Plant Soil 218 (1–2), 173–183 (2000). https://doi.org/10.1023/A:1014923911324

    Article  Google Scholar 

  6. S. Bedini, E. Pellegrino, L. Avio, S. Pellegrini, P. Bazzoffi, E. Argese, and M. Giovannetti, “Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices,” Soil Biol. Biochem. 41 (7), 1491–1496 (2009). https://doi.org/10.1016/j.soilbio.2009.04.005

    Article  Google Scholar 

  7. T. C. Caesar-TonThat, and V. L. Cochran, “Soil aggregate stabilization by a saprophytic lignin-decomposing basidiomycete fungus I. Microbiological aspects,” Biol. Fertil. Soils 32 (5), 374–380 (2000). https://doi.org/10.1007/s003740000263

    Article  Google Scholar 

  8. T. C. Caesar-TonThat, E. Espeland, A. J. Caesar, U. M. Sainju, R. T. Lartey, and J. F. Gaskin, “Effects of Agaricus lilaceps fairy rings on soil aggregation and microbial community structure in relation to growth stimulation of Western wheatgrass (Pascopyrum smithii) in Eastern Montana Rangeland,” Microb. Ecol. 66 (1), 120–131 (2013). https://doi.org/10.1007/s00248-013-0194-3

    Article  Google Scholar 

  9. T. C. Caesar-TonThat, “Soil binding properties of mucilage produced by a basidiomycete fungus in a model system,” Mycol. Res. 106 (8), 930–937 (2002). https://doi.org/10.1017/S0953756202006330

    Article  Google Scholar 

  10. W. Chang, X. Sui, X. X. Fan, T. T. Jia, and F. Q. Song, “Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings,” Front. Microbiol. 9, 652 (2018). https://doi.org/10.3389/fmicb.2018.00652

    Article  Google Scholar 

  11. H. W. Chau, Y. K. Goh, V. Vujanovic, and B. C. Si, “Wetting properties of fungi mycelium alter soil infiltration and soil water repellency in a γ-sterilized wettable and repellent soil,” Fungal Biol. 116 (12), 1212–1218 (2012). https://doi.org/10.1016/j.funbio.2012.10.004

    Article  Google Scholar 

  12. W. L. Chen, R. T. Koide, T. S. Adams, J. L. DeForest, L. Cheng, and D. M. Eissenstat, “Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees,” Proc. Natl. Acad. Sci. U.S.A. 113 (31), 8741 (2016). https://doi.org/10.1073/pnas.1601006113

    Article  Google Scholar 

  13. J. Dai, J. L. Hu, A. N. Zhu, J. F. Bai, J. H. Wang, and X. G. Lin, “No tillage enhances arbuscular mycorrhizal fungal population, glomalin-related soil protein content, and organic carbon accumulation in soil macroaggregates,” J. Soils Sediments 15 (5), 1055–1062 (2015). https://doi.org/10.1007/s11368-015-1091-9

    Article  Google Scholar 

  14. J. Demenois, L. Merino-Martín, N. F. Nuñez, A. Stokes, and F. Carriconde, “Do diversity of plants, soil fungi and bacteria influence aggregate stability on ultramafic ferralsols? A metagenomic approach in a tropical hotspot of biodiversity,” Plant Soil 448 (1), 213–229 (2020). https://doi.org/10.1007/s11104-019-04364-8

    Article  Google Scholar 

  15. J. Demenois, F. Rey, T. Ibanez, A. Stokes, and F. Carriconde, “Linkages between root traits, soil fungi and aggregate stability in tropical plant communities along a successional vegetation gradient,” Plant Soil 9, 319–334 (2018). https://doi.org/10.1007/s11104-017-3529-x

    Article  Google Scholar 

  16. J. Demenois, F. Rey, A. Stokes, and F. Carriconde, “Does arbuscular and ectomycorrhizal fungal inoculation improve soil aggregate stability? A case study on three tropical species growing in ultramafic Ferralsols,” Pedobiologia 64, 8–14 (2017). https://doi.org/10.1016/j.pedobi.2017.08.003

    Article  Google Scholar 

  17. X. X. Fan, W. Chang, F. J. Feng, and F. Q. Song, “Responses of photosynthesis-related parameters and chloroplast ultrastructure to atrazine in alfalfa (Medicago sativa L.) inoculated with arbuscular mycorrhizal fungi,” Ecotoxicol. Environ. Saf. 166, 102–108 (2018). https://doi.org/10.1016/j.ecoenv.2018.09.030

    Article  Google Scholar 

  18. R. Fokom, S. Adamou, M. C. Teugwa, A. D. Begoude Boyogueno, W. L. Nana, M.E.L. Ngonkeu, N. S. Tchameni, D. Nwaga, G. Tsala Ndzomo, and P. H. Amvam Zollo, “Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon,” Soil Tillage Res. 120, 69–75 (2012). https://doi.org/10.1016/j.still.2011.11.004

    Article  Google Scholar 

  19. C. F. Friese and M. F. Allen, “The spread of VA mycorrhizal fungal hyphae in soil: inoculum types and external hyphal architecture,” Mycologia 83, 409–418 (1991). https://doi.org/10.1080/00275514.1991.12026030

    Article  Google Scholar 

  20. V. Gadkar and M. C. Rillig, “The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60,” FEMS Microbiol. Lett. 263, 93–101 (2006). https://doi.org/10.1111/j.1574-6968.2006.00412.x

    Article  Google Scholar 

  21. A. Genre, L. Lanfranco, S. Perotto, and P. Bonfante, “Unique and common traits in mycorrhizal symbioses,” Nat. Rev. Microbiol. 18 (11), 1–12 (2020). https://doi.org/10.1038/s41579-020-0402-3

    Article  Google Scholar 

  22. F. Graf and M. Frei, “Soil aggregate stability related to soil density, root length, and mycorrhiza using site-specific Alnus incana and Melanogaster variegatus s.l.,” Ecol. Eng. 57, 314–323 (2013). https://doi.org/10.1016/j.ecoleng.2013.04.037

    Article  Google Scholar 

  23. A. Greiffenhagen, G. Wessolek, M. Facklam, M. Renger, and H. Stoffregen, “Hydraulic functions and water repellency of forest floor horizons on sandy soils,” Geoderma 132 (1–2), 182–195 (2008). https://doi.org/10.1016/j.geoderma.2005.05.006

    Article  Google Scholar 

  24. Z. C. Guo, J. B. Zhang, J. Fan, X. Y. Yang, Y. L. Yi, D. Z. Wang, P. Zhu, and X. H. Peng, “Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments,” Sci. Total Environ. 660, 1029–1037 (2019). https://doi.org/10.1016/j.scitotenv.2019.01.051

    Article  Google Scholar 

  25. J. D. He, A. K. Srivastava, H. Y. Yang, Q. S. Wu, and Z. Y. Ning, “Degradation characteristics of glomalin-relation soil protein in Citrus rhizosphere,” Ann. Plant Soil Res. 17 (4), 333–335 (2015).

    Google Scholar 

  26. L. L. Ji, W. F. Tan, and X. H. Chen, “Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in calcaric regosol under well-watered and drought stress conditions,” Soil Tillage Res. 185, 1–8 (2019). https://doi.org/10.1016/j.still.2018.08.010

    Article  Google Scholar 

  27. X. Jia, Y. H. Zhao, T. Liu, S. P. Huang, and Y. F. Chang, “Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils,” Environ. Pollut. 218, 349–357 (2016). https://doi.org/10.1016/j.envpol.2016.07.010

    Article  Google Scholar 

  28. D. Khirood and B. Mahesh, “Fungal diversity of sustainable agriculture,” in Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nanotechnology, Ed. by V. K. Sharma, M. P. Shah, S. Parmar, and A. Kumar (Elsevier, Amsterdam, 2021), pp. 203–225.

    Google Scholar 

  29. J. Kohler, A. Roldán, M. Campoy, and F. Caravaca, “Unraveling the role of hyphal networks from arbuscular mycorrhizal fungi in aggregate stabilization of semiarid soils with different textures and carbonate contents,” Plant Soil 410 (1–2), 273–281 (2017). https://doi.org/10.1007/s11104-016-3001-3

    Article  Google Scholar 

  30. A. Lehmann and M. C. Rillig, “Understanding mechanisms of soil biota involvement in soil aggregation: a way forward with saprobic fungi?” Soil Biol. Biochem. 88, 298–302 (2015). https://doi.org/10.1016/j.soilbio.2015.06.006

    Article  Google Scholar 

  31. A. Lehmann, W. Zheng, and M. C. Rillig, “Soil biota contributions to soil aggregation,” Nat. Ecol. Evol. 1, 1828–1835 (2017). https://doi.org/10.1038/s41559-017-0344-y

    Article  Google Scholar 

  32. A. Lehmann, W. Zheng, K. Soutschek, J. Roy, A. M. Yurkov, and M. C. Rillig, “Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi,” Sci. Rep. 9, 14152 (2019). https://doi.org/10.1038/s41598-019-50565-7

    Article  Google Scholar 

  33. E. F. Leifheit, E. Verbruggen, and M. C. Rillig, “Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation,” Soil Biol. Biochem. 81, 323–328 (2015). https://doi.org/10.1016/j.soilbio.2014.12.003

    Article  Google Scholar 

  34. E. F. Leifheit, S. D. Veresoglou, A. Lehmann, E. K. Morris, and M. C. Rillig, “Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation-a meta-analysis,” Plant Soil 374 (1), 523–537 (2014). https://doi.org/10.1007/s11104-013-1899-2

    Article  Google Scholar 

  35. M. B. Linder, G. R. Szilvay, T. Nakari-Setälä, and M. E. Penttilä, “Hydrophobins: the protein-amphiphiles of filamentous fungi,” FEMS Microbiol. Rev. 29, 877–896 (2005). https://doi.org/10.1016/j.femsre.2005.01.004

    Article  Google Scholar 

  36. H. F. Liu, X. K. Wang, C. T. Liang, Z. Ai, Y. Wu, H. W. Xu, S. Xue, and G. B. Liu, “Glomalin-related soil protein affects soil aggregation and recovery of soil nutrient following natural revegetation on the Loess Plateau,” Geoderma 357, 113921–113921 (2020). https://doi.org/10.1016/j.geoderma.2019.113921

    Article  Google Scholar 

  37. S. S. Luo, S. J Wang, L. Tian, S. H. Shi, S. Q. Xu, F. Yang, X. J. Li, Z. C. Wang, and C. J. Tian, “Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils,” Geoderma 329, 108–117 (2018). https://doi.org/10.1016/j.geoderma.2018.05.023

    Article  Google Scholar 

  38. A. Mankel, K. Krause, and E. Kothe, “Identification of hydrophobin gene that is developmentally regulated in the ectomycorrhizal fungus Tricholoma terreum,” Appl. Environ. Microbiol. 68, 1408–1413 (2002). https://doi.org/10.1128/AEM.68.3.1408-1413.2002

    Article  Google Scholar 

  39. M. R. Moitinho, C. Fernandes, P. V. Truber, A. V. Marcelo, J. E. Corá, and E. S. Bicalho, “Arbuscular mycorrhizal fungi and soil aggregation in a no-tillage system with crop rotation,” J. Plant Nutr. Soil Sci. 183 (4), 482–491 (2020). https://doi.org/10.1002/jpln.201900456

    Article  Google Scholar 

  40. N. Mori, K. Nishiuma, T. Sugiyama, H. Hayashi, and K. Akiyama, “Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi,” Phytochemistry 130, 90–98 (2016). https://doi.org/10.1016/j.phytochem.2016.05.012

    Article  Google Scholar 

  41. E. K. Morris, D. J. P. Morris, S. Vogt, S.-C. Gleber, M. Bigalke, W. Wilcke, and M. C. Rillig, “Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi,” ISME J. 13, 1639–1646 (2019). https://doi.org/10.1038/s41396-019-0369-0

    Article  Google Scholar 

  42. C. W. W. Ng, H. W. Liu, S. Feng, and A. Garg, “Analytical solutions for calculating pore-water pressure in an infinite unsaturated slope with different root architectures,” Can. Geotechn. J. 52 (12), 1981–1992(2015). https://doi.org/10.1139/cgj-2015-0001

    Article  Google Scholar 

  43. G. Nihal, S. Ankit, R. Latha, C. W. T. Daniel, and M. Sudip, “Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: a review,” Environ. Pollut. 268, 115549 (2021). https://doi.org/10.1016/j.envpol.2020.115549

    Article  Google Scholar 

  44. S. L. Peng, T. Guo, and G. C. Liu, “The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China,” Soil Biol. Biochem. 57, 411–417 (2013). https://doi.org/10.1016/j.soilbio.2012.10.026

    Article  Google Scholar 

  45. J. S. Piotrowski, T. Denich, J. N. Klironomos, J. M. Graham, and M. C. Rillig, “The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species,” New Phytol. 164 (2), 365–373 (2004). https://doi.org/10.1111/j.1469-8137.2004.01181.x

    Article  Google Scholar 

  46. H. I. G. S. Piyaruwan, and D. A. L, “Leelamanie, “Existence of water repellency and its relation to structural stability of soils in a tropical Eucalyptus plantation forest,” Geoderma 380, 114679 (2020). https://doi.org/10.1016/j.geoderma.2020.114679

    Article  Google Scholar 

  47. M. Pohl, F. Graf, A. Buttler, and C. Rixen, “The relationship between plant species richness and soil aggregate stability can depend on disturbance,” Plant Soil 355 (1–2), 87–102 (2012). https://doi.org/10.1007/s11104-011-1083-5

    Article  Google Scholar 

  48. M. C. Rillig and D. L. Mummey, “Mycorrhizas and soil structure,” New Phytol. 171, 41–53 (2006). https://doi.org/10.1111/j.1469-8137.2006.01750.x

    Article  Google Scholar 

  49. M. C. Rillig, N. F. Mardatin, E. F. Leifheit, and P. M. Antunes, “Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biol. Biochem. 42 (7), 1189–1191 (2010). https://doi.org/10.1016/j.soilbio.2010.03.027

    Article  Google Scholar 

  50. M. C. Rillig, P. W. Ramsey, S. Morris, and E. A. Paul, “Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change,” Plant Soil 253, 293–299 (2003). https://doi.org/10.1023/A:1024807820579

    Article  Google Scholar 

  51. E. V. Shein, N. V. Verkhovtseva, G. S. Bykova, and E. B. Pashkevich, “Aggregate formation in a kaolinite suspension during microbiological modification of clay surface,” Eurasian Soil Sci. 53, 349–354 (2020). https://doi.org/10.1134/S1064229320030072

    Article  Google Scholar 

  52. A. K. Singh, A. Rai, V. Pandey, and N. Singh, “Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics,” J. Environ. Manage. 192, 142–149 (2017). https://doi.org/10.1016/j.jenvman.2017.01.041

    Article  Google Scholar 

  53. J. Six, H. Bossuyt, S. Degryze, and K. Denef, “A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics,” Soil Tillage Res. 79, 7–31 (2004). https://doi.org/10.1016/j.still.2004.03.008

    Article  Google Scholar 

  54. J. Six, R. T. Conant, E. A. Paul, and K. Paustian, “Stabilization mechanisms of soil organic matter: implications for C-saturation of soils,” Plant Soil 241, 155–176 (2002). https://doi.org/10.1023/A:1016125726789

    Article  Google Scholar 

  55. M. Spohn and M. C. Rillig, “Temperature- and moisture-dependent soil water repellency induced by the basidiomycete Agaricus bisporus,” Pedobiologia 55 (1), 59–61 (2012). https://doi.org/10.1016/j.pedobi.2011.10.006

    Article  Google Scholar 

  56. D. J. Spurgeon, A. M. Keith, O. Schmidt, D. R. Lammertsma, and J. H. Faber, “Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties,” BMC Ecol. 1, 13 (2013). https://doi.org/10.1186/1472-6785-13-46

    Article  Google Scholar 

  57. J. M. Tisdall, S. E. Nelson, K. G. Wilkinson, S. E. Smith, and B. M. McKenzie, “Stabilization of soil against wind erosion by six saprotrophic fungi,” Soil Biol. Biochem. 50, 134–141 (2012). https://doi.org/10.1016/j.soilbio.2012.02.035

    Article  Google Scholar 

  58. J. M. Tisdall, S. E. Smith, and P. Rengasamy, “Aggregation of soil by fungal hyphae,” Austral. J. Soil Res. 35 (1), 55–60 (1997).

    Article  Google Scholar 

  59. M. G. Veloso, D. A. Angers, M. H. Chantigny, and C.Bayer, “Carbon accumulation and aggregation are mediated by fungi in a subtropical soil under conservation agriculture,” Geoderma 363, 114159 (2020). https://doi.org/10.1016/j.geoderma.2019.114159

    Article  Google Scholar 

  60. E. Verbruggen, M. G. A. V. D. Heijden, M. C. Rillig, and T. Kiers, “Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success,” New Phytol. 197 (4), 1104–1109 (2013). https://doi.org/10.1111/j.1469-8137.2012.04348.x

    Article  Google Scholar 

  61. E. S. Vogelmann, J. M. Reichert, J. Prevedello, G. O. Awe, and J. Mataix-Solera, “Can occurrence of soil hydrophobicity promote the increase of aggregates stability?” Catena 110, 24–31 (2013). https://doi.org/10.1016/j.catena.2013.06.009

    Article  Google Scholar 

  62. Q. Wang, W. J. Wang, Z. L. Zhong, H. M. Wang, and Y. J. Fu, “Variation in glomalin in soil profiles and its association with climatic conditions, shelterbelt characteristics, and soil properties in poplar shelterbelts of Northeast China,” J. For. Res. 31 (1), 279–290 (2020). https://doi.org/10.1007/s11676-019-00909-w

    Article  Google Scholar 

  63. Y. Wang, J. H. Zhang, and Z. H. Zhang, “Influences of intensive tillage on water-stable aggregate distribution on a steep hillslope,” Soil Tillage Res. 151, 82–92 (2015). https://doi.org/10.1016/j.still.2015.03.003

    Article  Google Scholar 

  64. M. Welemariam, F. Kebede, B. Bedadi, and E. Birhane, “Effect of community-based soil and water conservation practices on soil glomalin, aggregate size distribution, aggregate stability and aggregate-associated organic carbon in northern highlands of Ethiopia,” Agric. Food Secur. 7, 42 (2018). https://doi.org/10.1186/s40066-018-0193-1

    Article  Google Scholar 

  65. G. W. T. Wilson, C. W. Rice, and M. C. Rillig, A. Springer, and D. C. Hartnett, “Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments,” Ecol. Lett. 12 (5), 452–461 (2009). https://doi.org/10.1111/j.1461-0248.2009.01303.x

    Article  Google Scholar 

  66. Q. S. Wu, M. Q. Cao, Y. N. Zou, and X. H. He, “Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange,” Sci. Rep. 4, 5823 (2014). https://doi.org/10.1038/srep05823

    Article  Google Scholar 

  67. Q. S. Wu, X. H. He, Y. N. Zou, K. P. He, Y. H. Sun, and M. Q. Cao, “Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β-glucosidase in the rhizosphere of Citrus unshiu,” Soil Biol. Biochem. 45, 181–183 (2012). https://doi.org/10.1016/j.soilbio.2011.10.002

    Article  Google Scholar 

  68. L. **ao, Y. Zhang, P. Li, G. C. Xu, and Y. Zhang, “Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural succession grassland and Chinese pine forest on the Loess Plateau,” Geoderma 334, 1–8 (2019). https://doi.org/10.1016/j.geoderma.2018.07.043

    Article  Google Scholar 

  69. Y. Yin, C. H. Liang, F. M. **, L. Y. Du, J. Y. Li, and L. Liu, “Micro-aggregate stability in greenhouse management system in Northeast China,” Eurasian Soil Sci. 54, 1350–1358 (2021). https://doi.org/10.1134/S1064229321090143

    Article  Google Scholar 

  70. C. A. York, and P. M. Canaway, “Water repellent soils as they occur on UK golf greens,” J. Hydrol. 231–232, 126–133 (2000). https://doi.org/10.1016/S0022-1694(00)00189-X

    Article  Google Scholar 

  71. J. Zhang, X. L. Tang, X. H. He, and J. X. Liu, “Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: potential consequences for soil carbon accumulation,” Soil Biol. Biochem. 83, 142–149 (2015). https://doi.org/10.1016/j.soilbio.2015.01.023

    Article  Google Scholar 

  72. S. J. Zhang, J. Z. Yu, S. W. Wang, R. P. Singh, and D. Fu, “Nitrogen fertilization altered arbuscular mycorrhizal fungi abundance and soil erosion of paddy fields in the Taihu Lake region of China,” Environ. Sci. Pollut. Res. 26, 27987–27998 (2019). https://doi.org/10.1007/s11356-019-06005-0

    Article  Google Scholar 

  73. Z. F. Zhang, A. Mallik, J. C. Zhang, Y. Q. Huang, and L. W. Zhou, “Effects of arbuscular mycorrhizal fungi on inoculated seedling growth and rhizosphere soil aggregates,” Soil Tillage Res. 194, 104340 (2019). https://doi.org/10.1016/j.still.2019.104340

    Article  Google Scholar 

  74. W. S. Zheng, E. K. Morris, and M. C. Rillig, “Ectomycorrhizal fungi in association with Pinus sylvestris seedlings promote soil aggregation and soil water repellency,” Soil Biol. Biochem. 78, 326–331 (2014). https://doi.org/10.1016/j.soilbio.2014.07.015

    Article  Google Scholar 

  75. R. H. Zhu, Z. C. Zheng, T. X. Li, S. Q. He, X. Z. Zhang, Y. D. Wang, and T. Liu, “Effect of tea plantation age on the distribution of glomalin-related soil protein in soil water-stable aggregates in southwestern China,” Environ. Sci. Pollut. Res. 26 (2), 1973–1982 (2019). https://doi.org/10.1007/s11356-018-3782-4

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the Natural Science Foundation of Heilongjiang Province (YQ2019C015 and TD2019C002), National Natural Science Foundation of China (32171621, 31500431, 31971527 and 31901926), Fundamental Research Funds for General University of Heilongjiang Province (RCYJTD201904), Natural Science Foundation for Outstanding Youth of Heilongjiang University (JCL201906) and the Innovative Talents Training Program of Heilongjiang Province for General Universities (UNPYSCT-2017120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Song.

Ethics declarations

The authors state no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Pan, H., **, Y. et al. The Underlying Mechanism of Soil Aggregate Stability by Fungi and Related Multiple Factor: A Review. Eurasian Soil Sc. 55, 242–250 (2022). https://doi.org/10.1134/S1064229322020065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322020065

Keywords:

Navigation