Log in

Optical Forces at Nanometer Scales

  • REVIEW
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Advanced techniques for optical manipulation of nanoscale objects are presented. Possible mechanisms of enhancement of the effect of light on nanoobjects are listed. Enhancements by plasmon effects, field amplification in high-Q resonators, and collective effects are characterized. These methods are suitable for manipulation of various nanoobjects: quantum dots, nanowires, nanotubes, and cell organelles. Techniques for the measurement of forces at nanometer scales with atomic force microscopes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).

    Article  Google Scholar 

  2. D. G. Grier, Nature 424 (6950), 810 (2003).

    Article  Google Scholar 

  3. Y. Cui and C. Bustamante, Proc. Natl. Acad. Sci. U.S.A. 97 (1), 127 (2000).

    Article  Google Scholar 

  4. M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426 (6965), 421 (2003).

    Article  Google Scholar 

  5. G. Wright, M. J. Tucker, P. C. Morton, et al., Current Opinion in Obstetrics & Gynecology 10, 221 (1998).

    Article  Google Scholar 

  6. M. W. Berns, Y. Tadir, H. Liang, and B. Tromberg, Methods in Cell Biology 55, 71 (1998).

    Article  Google Scholar 

  7. M. Dienerowitz, M. Mazilu, and K. Dholakia, J. Nanophotonics 2, 021875 (2008).

    Article  Google Scholar 

  8. J. P. Gordon, Phys. Rev. A 8, 14 (1973).

    Article  Google Scholar 

  9. B. T. Draine, Astrophys. J. 333, 848 (1988).

    Article  Google Scholar 

  10. G. Volpe, L. Helden, T. Brettschneider, et al., Phys. Rev. Lett. 104, 170602 (2010).

    Article  Google Scholar 

  11. V. I. Balykin, V. S. Letokhov, and V. G. Minogin, Usp. Fiz. Nauk 147 (9), 117 (1985).

    Article  Google Scholar 

  12. V. I. Balykin, V. S. Letokhov, and V. I. Mishin, Pis’ma Zh. Eksp. Teor. Fiz. 29, 614 (1979).

    Google Scholar 

  13. S. Chu, Rev. Mod. Phys. 70, 685 (1998).

    Article  Google Scholar 

  14. C. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998).

    Article  Google Scholar 

  15. W. D. Phillips, Rev. Mod. Phys. 70, 721 (1998).

    Article  Google Scholar 

  16. H. Metcalf, Rev. Mod. Phys. 89, 041001 (2017).

    Article  Google Scholar 

  17. A. Pukhov, J. Meyer-Ter-Vehn, Appl. Phys. B 74 (4–5), 355 (2002).

    Article  Google Scholar 

  18. D. Umstadter, S. Y. Chen, A. Maksimchuk, et al., Science 273 (5274), 472 (1996).

    Article  Google Scholar 

  19. K. Svoboda and S. Block, Opt. Lett. 19, 930 (1994).

    Article  Google Scholar 

  20. M. Pelton, M. Liu, H. Y. Kim, et al., Opt. Lett. 31, 2075 (2006).

    Article  Google Scholar 

  21. K. C. Toussaint, M. Liu, M. Pelton, et al., Opt. Express 15 (19), 12017 (2007).

    Article  Google Scholar 

  22. C. Selhuber-Unkel, I. Zins, O. Schubert, et al., Nano Lett. 8, 2998 (2008).

    Article  Google Scholar 

  23. E. Messina, E. Cavallaro, A. Cacciola, et al., ACS Nano 5, 905 (2011).

    Article  Google Scholar 

  24. M. Pelton, M. Liu, H. Y. Kim, et al., Opt. Lett. 31, 2075 (2006).

    Article  Google Scholar 

  25. P. H. Jones, F. Palmisano, F. Bonaccorso, et al., ACS Nano 3, 3077 (2009).

    Article  Google Scholar 

  26. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, Phys. Rev. Lett. 63, 1233 (1989).

    Article  Google Scholar 

  27. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, Science 249 (4970), 749 (1990).

    Article  Google Scholar 

  28. K. Dholakia and P. Zemanek, Rev. Mod. Phys. 82, 1767 (2010).

    Article  Google Scholar 

  29. A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, et al., Light: Science & Appl. 6 (5), e16258 (2017).

    Article  Google Scholar 

  30. Y. Montelongo, A. K. Yetisen, H. Butt, and S. H. Yun, Nature Commun. 7, 12002 (2016).

    Article  Google Scholar 

  31. S. Albaladejo, J. J. Sáenz, and M. I. Marqués, Nano Lett. 11, 4597 (2011).

    Article  Google Scholar 

  32. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nature Phys. 3, 477 (2007).

    Article  Google Scholar 

  33. M. Righini, G. Volpe, C. Girard, et al., Phys. Rev. Lett. 100, 183604 (2008).

    Article  Google Scholar 

  34. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nature Photonics 2, 365 (2008).

    Article  Google Scholar 

  35. M. Righini, P. Ghenuche, S. Cherukulappurath, et al., Nano Lett. 9, 3387 (2009).

    Article  Google Scholar 

  36. Y. Pang and R. Gordon, Nano Lett. 12 (1), 402 (2011).

    Article  Google Scholar 

  37. M. L. Juan, R. Gordon, Y. Pang, et al., Nature Phys. 5, 915 (2009).

    Article  Google Scholar 

  38. K. Okamoto and S. Kawata, Phys. Rev. Lett. 83 (22), 4534 (1999).

    Article  Google Scholar 

  39. O. J. F. Martin and C. Girard, Appl. Phys. Lett. 70, 705 (1997).

    Article  Google Scholar 

  40. R. Quidant, D. Petrov, and G. Badenes, Opt. Lett. 30, 1009 (2005).

    Article  Google Scholar 

  41. K. Wang, E. Schonbrun, and K. B. Crozier, Nano Lett. 9, 2623 (2009).

    Article  Google Scholar 

  42. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, Nano Lett. 10, 3506 (2010).

    Article  Google Scholar 

  43. V. Folli, G. Ruocco, and C. Conti, Sci. Reports 5, 17652 (2015).

    Article  Google Scholar 

  44. A. S. Shalin and S. V. Sukhov, Plasmonics 8, 625 (2013).

    Article  Google Scholar 

  45. M. L. Juan, R. Gordon, Y. Pang, et al., Nature Phys. 5, 915 (2009).

    Article  Google Scholar 

  46. O. M. Maragò, P. H. Jones, P. G. Gucciardi, et al., Nature Nanotech. 8, 807 (2013).

    Article  Google Scholar 

  47. D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, Lab. on a Chip 11, 995 (2011).

    Article  Google Scholar 

  48. M. L. Juan, M. Righini, and R. Quidant, Nature Photonics 5, 349 (2011).

    Article  Google Scholar 

  49. S. Arnold, D. Keng, S. I. Shopova, et al., Opt. Express 17, 6230–6238 (2009).

    Article  Google Scholar 

  50. S. Mandal, X. Serey, and D. Erickson, Nano Lett. 10, 99 (2009).

    Article  Google Scholar 

  51. Y. F. Chen, X. Serey, R. Sarkar, et al., Nano Lett. 12, 1633 (2012).

    Article  Google Scholar 

  52. S. Y. Lin and K. B. Crozier, ACS Nano 7, 1725 (2013).

    Article  Google Scholar 

  53. N. Descharmes, U. P. Dharanipathy, Z. L. Diao, et al., Phys. Rev. Lett. 110, 123601 (2013).

    Article  Google Scholar 

  54. T. F. Krauss, J. Phys. D: Appl. Phys. 40, 2666 (2007).

    Article  Google Scholar 

  55. M. G. Scullion, Y. Arita, T. F. Krauss, and K. Dholakia, Optica 2, 816 (2015).

    Article  Google Scholar 

  56. A. H. Yang, S. D. Moore, B. S. Schmidt, et al., Nature 457 (7225), 71 (2009).

    Article  Google Scholar 

  57. P. Horak, G. Hechenblaikner, K. M. Gheri, et al., Phys. Rev. Lett. 79 (25), 4974 (1997).

    Article  Google Scholar 

  58. J. E. Lugo, R. Doti, N. Sanchez, and J. Faubert, J. Nanophotonics 8 (1), 083071 (2014).

    Article  Google Scholar 

  59. S. Manipatruni, J. T. Robinson, and M. Lipson, Phys. Rev. Lett. 102, 213903 (2009).

    Article  Google Scholar 

  60. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).

    Article  Google Scholar 

  61. H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Rev. Mod. Phys. 85, 553 (2013).

    Article  Google Scholar 

  62. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media (Martinus Nijhoff, Hague, 1983).

  63. Y. Sokolov, D. Frydel, D. G. Grier, et al., Phys. Rev. Lett. 107, 158302 (2011).

    Article  Google Scholar 

  64. H. Nagar and Y. Roichman, Phys. Rev. E 90, 042302 (2014).

    Article  Google Scholar 

  65. V. Kajorndejnukul, S. Sukhov, and A. Dogariu, Sci. Rep. 5, 14861 (2015).

    Article  Google Scholar 

  66. A. Ashkin, J. M. Dziedzic, and P. W. Smith, Opt. Lett. 7, 276 (1982).

    Article  Google Scholar 

  67. E. Greenfield, J. Nemirovsky, R. El-Ganainy, et al., Opt. Express 21, 23785 (2013).

    Article  Google Scholar 

  68. L. P. Ghislain and W. W. Webb, Opt. Lett. 18, 1678 (1993).

    Article  Google Scholar 

  69. D. B. Phillips, G. M. Gibson, R. Bowman, et al., Opt. Express 20, 29679 (2012).

    Article  Google Scholar 

  70. M. R. Pollard, S. W. Botchway, B. Chichkov, et al., New J. Phys. 12, 113056 (2010).

    Article  Google Scholar 

  71. I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, Appl. Phys. Lett. 97, 073121 (2010).

    Article  Google Scholar 

  72. I. Rajapaksa and H. K. Wickramasinghe, Appl. Phys. Lett. 99, 161103 (2011).

    Article  Google Scholar 

  73. J. Jahng, J. Brocious, D. A. Fishman, et al., Phys. Rev. B 90, 155417 (2014).

    Article  Google Scholar 

  74. D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, Phys. Rev. A 84, 011807 (2011).

    Article  Google Scholar 

  75. D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, Opt. Lett. 36, 4758 (2011).

    Article  Google Scholar 

  76. D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, Opt. Lett. 37, 3606 (2012).

    Article  Google Scholar 

  77. D. C. Kohlgraf-Owens, L. Greusard, S. Sukhov, et al., Nanotecnology 25, 035203 (2013).

    Article  Google Scholar 

  78. J. Kohoutek, D. Dey, A. Bonakdar, et al., Nano Lett. 11, 3378 (2011).

    Article  Google Scholar 

  79. F. Huang, V. A. Tamma, Z. Mardy, et al., Sci. Rep. 5, 10610 (2015).

    Article  Google Scholar 

  80. F. Huang, V. A. Tamma, M. Rajaei, et al., Appl. Phys. Lett. 110, 063103 (2017).

    Article  Google Scholar 

  81. D. Guan, Z. H. Hang, Z. Marcet, et al., Sci. Rep. 5, 16216 (2015).

    Article  Google Scholar 

  82. S. D. Zakharov, M. A. Kazaryan, and N. P. Korotkov, Pis’ma Zh. Eksp. Teor. Fiz. 60, 317 (1994).

    Google Scholar 

  83. Vincent M. R. de Saint and J. P. Delville, Advances in Microfluidics, Ed. by R. Kelly (Intech Open, London, 2012), p. 3.

    Google Scholar 

  84. P. Y. Chiou, A. T. Ohta, and M. C. Wu, Nature 436 (7049), 370 (2005).

    Article  Google Scholar 

  85. M. Krishnan, J. Park, and D. Erickson, Opt. Lett. 34, 1976 (2009).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant nos. 18-02-00414 and 18-52-00005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sukhov.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhov, S.V. Optical Forces at Nanometer Scales. J. Commun. Technol. Electron. 63, 1137–1142 (2018). https://doi.org/10.1134/S1064226918100170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918100170

Keywords

Navigation