Log in

Physics-Informed Radial Basis-Function Networks

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Analysis of the possibilities of physics-informed neural networks intended for solution of boundary-value problems for partial differential equations is carried out. The possibilities of using radial basis-function networks as physics-informed neural networks are shown. Networks of radial basis functions for solving forward and inverse problems describing processes in piecewise homogeneous media have been proposed and investigated on model problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. Lagaris, A. Likas, and D. I. Fotiadis, IEEE Trans. Neural Networks 9 (5), 987 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. N. Yadav, A. Yadav, and M. Kumar, An Introduction to Neural Network Methods for Differential Equations (Springer, Dordrecht, 2015).

    Book  Google Scholar 

  3. G. Cybenko, Math. Control, Signals Syst. 2, 303 (1989).

    Article  Google Scholar 

  4. K. Hornik, Neural Networks 4 (2), 251 (1991). https://doi.org/10.1016/0893-6080(91)90009-T

    Article  Google Scholar 

  5. B. Hanin, Universal function approximation by deep neural nets with bounded width and ReLU activations (2017). https://arxiv.org/abs/1708.02691v2

  6. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics informed deep learning (Part I): Data-driven solutions of nonlinear partial differential equations (2017). https://arxiv.org/abs/1711.10561

  7. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics informed deep learning (Part II): Data-driven discovery of nonlinear partial differential equations (2017). https://arxiv.org/abs/1711.10566

  8. M. Raissi, P. Perdikaris, and G. E. Karniadakis, J. Comput. Phys. 378, 686 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. E. Karniadakis, I. G. Kevrekidis, L. Lu, and L. Yang, Nat. Rev. Phys. 3, 422 (2021).

    Article  Google Scholar 

  10. A. G. Bavdin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, J. Mach. Learn. Res. 18 (1), 1 (2018).

    Google Scholar 

  11. S. Cuomo, V. S. D. Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, J. Sci. Comput. 92, 88 (2022).

    Article  Google Scholar 

  12. M. J. Kochenderfer and T. A. Wheeler, Algorithms for Optimization (MIT Press, Cambridge, 2019).

    Google Scholar 

  13. V. Lakshmanan, S. Robinson, and M. Munn, Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and MLOps (O’Reilly Media, 2020).

    Google Scholar 

  14. D. Tarkhov and A. Vasilyev, Semi-Empirical Neural Network Modeling and Digital Twins Development (Academic, Cambridge, 2019).

    Google Scholar 

  15. A. A. Ramabathiran and P. Ramachandran, J. Comput. Phys. 445, 110600 (2021).

  16. M. M. Alqezweeni, R. A. Glumskov, V. I. Gorbachenko, and D. A. Stenkin, Solving partial differential equations on radial basis functions networks and on fully connected deep neural networks, in Proc. in Adaptation, Learning and Optimization: Proc. Int. Conf. on Intelligent Vision and Computing (ICIVC 2021) (Springer, Cham, 2022), Vol. 15, p. 240. https://doi.org/10.1007/978-3-030-97196-0_20

  17. C. C. Aggarwal, Neural Networks and Deep Learning: A Textbook (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-94463-0

    Book  Google Scholar 

  18. P. Niyogi and F. Girosi, Neural Comput. 8 (4), 819 (1996).

    Article  Google Scholar 

  19. V. I. Gorbachenko and M. V. Zhukov, Comput. Math. Math. Phys. 57, 145 (2017). https://doi.org/10.1134/S0965542517010079

    Article  MathSciNet  Google Scholar 

  20. M. M. Alqezweeni and V. I. Gorbachenko, Modeli, Sist., Seti Ekon., Tekh., Prirode O-ve, No. 3 (23), 123 (2017). https://mss.pnzgu.ru/mss11317

  21. D. W. Marquardt, J. Soc. Ind. Appl. Math. 11 (2), 431 (1963).

    Article  Google Scholar 

  22. H. S. Carslaw, Introduction to the Mathematical Theory of the Conduction of Heat in Solids (Franklin Classic, Blackweel, 2018).

  23. J. H. Abou-Kassem, M. Rafiqul Islam, and S. M. Farouq-Ali, Petroleum Reservoir Simulation: The Engineering Approach (Gulf Professional, Houston, 2020).

    Google Scholar 

  24. M. P. Anderson, W. W. Woessner, and R. J. Hunt, Applied Groundwater Modeling: Simulation of Flow and Advective Transport (Academic, Cambridge, 2015).

    Google Scholar 

  25. D. A. Stenkin and V. I. Gorbachenko, Solving equations describing processes in a piecewise homogeneous medium on radial basis functions networks, in Advances in Neural Computation, Machine Learning, and Cognitive Research IV. NEUROINFORMATICS 2020. Studies in Computational Intelligence (Springer, Cham, 2021), Vol. 925, p. 412. https://doi.org/10.1007/978-3-030-60577-3_49

    Book  Google Scholar 

  26. V. I. Gorbachenko and D. A. Stenkin, Solving of inverse coefficient problems on networks of radial basis functions, in Advances in Neural Computation, Machine Learning, and Cognitive Research V. NEUROINFORMATICS 2021. Studies in Computational Intelligence (Springer, Cham, 2022), Vol. 1008, p. 230. https://doi.org/10.1007/978-3-030-91581-0_31

    Book  Google Scholar 

  27. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics (Walter de Gruyter, Berlin, 2007).

    Book  Google Scholar 

  28. V. A. Morozov, Methods for Solving Incorrectly Posed Problems (Springer-Verlag, New York, 1984). https://doi.org/10.1007/978-1-4612-5280-1

    Book  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Gorbachenko or D. A. Stenkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Drozdova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbachenko, V.I., Stenkin, D.A. Physics-Informed Radial Basis-Function Networks. Tech. Phys. 68, 151–157 (2023). https://doi.org/10.1134/S1063784223050018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223050018

Keywords:

Navigation