Log in

Discharge KrF Laser with a High Specific Energy of Radiation

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We report the results of experimental and numerical investigations of a discharge KrF laser with specific pump power of 3.5 and 7 MW/cm3; generation is obtained with specific radiation pulse energy of about 6 and 9.5 J/L for an internal energy efficiency of about 4%. Time dependences of the formation of charged and excited particles in a dense excimer plasma with an electron concentration of ~1016 cm–3 are obtained. The conditions for effective operation of the laser are proposed, which will ensure a further increase in the specific radiation energy by more than two times with preserved high internal laser efficiency relative to the energy input into the discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. M. Borisov, I. E. Bragin, A. Yu. Vinohodov, and V. A. Vodchiz, Quantum Electron. 22 (6), 533 (1995).

    Google Scholar 

  2. A. A. Zhupikov and A. M. Razhev, Quantum Electron. 28 (8), 667 (1998).

    Article  ADS  Google Scholar 

  3. D. Basting, K. D. Pippert, and U. Stamm, Proc. SPIE 4426, 25 (2002).

    Article  ADS  Google Scholar 

  4. V. M. Buchnev, A. D. Klementov, and P. B. Sergeev, Sov. J. Quantum Electron. 11 (6), 739 (1981).

    Article  ADS  Google Scholar 

  5. C. B. Edwards, F. O’Neill, and M. J. Shaw, Appl. Phys. Lett. 36 (8), 617 (1980). https://doi.org/10.1063/1.91627

    Article  ADS  Google Scholar 

  6. T. H. Johnson and A. M. Hunter, J. Appl. Phys. 51 (5), 2406 (1980). https://doi.org/10.1063/1.328010

    Article  ADS  Google Scholar 

  7. M. J. Kushner, IEEE Trans. Plasma Sci. 19 (2), 387 (1991). https://doi.org/10.1109/27.106837

    Article  ADS  Google Scholar 

  8. V. V. Osipov, Phys.-Usp. 43 (3), 221 (2000). https://doi.org/10.1070/PU2000v043n03ABEH000602

    Article  Google Scholar 

  9. D. Lo and J.-G. **e, Opt. Quantum Electron. 21, 147 (1989). https://doi.org/10.1007/BF02190080

    Article  Google Scholar 

  10. R. Dreiskemper and W. Botticher, IEEE Trans. Plasma Sci. 23 (6), 987 (1995). https://doi.org/10.1109/27.476487

    Article  ADS  Google Scholar 

  11. M. Makarov and Yu. Bychkov, J. Phys. D: Appl. Phys. 29 (2), 350 (1996). https://doi.org/10.1088/0022-3727/29/2/011

    Article  ADS  Google Scholar 

  12. V. M. Baginskii, N. S. Belokrinitskii, P. M. Golovinskii, A. N. Panchenko, V. F. Tarasenko, and A.  I.  Shchedrin, Sov. J. Quantum Electron. 20 (11), 1298 (1990). https://doi.org/10.1070/QE1990v020n11ABEH007474

    Article  ADS  Google Scholar 

  13. W. H. Long, M. J. Plummer, and E. A. Stappaerts, Appl. Phys. Lett. 43 (8), 735 (1983). https://doi.org/10.1063/1.94478

    Article  ADS  Google Scholar 

  14. R. S. Taylor and K. E. Leopold, J. Appl. Phys. 65 (1), 22 (1989). https://doi.org/10.1063/1.342576

    Article  ADS  Google Scholar 

  15. E. K. Baksht, A. N. Panchenko, and V. F. Tarasenko, Quantum Electron. 30 (6), 506 (2000). https://doi.org/10.1070/QE2000v030n06ABEH001752

    Article  ADS  Google Scholar 

  16. R. Riva, M. Legentil, S. Pasquiers, and V. Puech, J. Phys. D: Appl. Phys. 28 (5), 856 (1995). https://doi.org/10.1088/0022-3727/28/5/006

    Article  ADS  Google Scholar 

  17. Yu. Bychkov, M. Makarov, A. Suslov, and A. Yastremsky, Rev. Sci. Instrum. 65 (1), 28 (1994).

    Article  ADS  Google Scholar 

  18. G. J. Ernst, Opt. Commun. 49 (4), 275 (1984).

    Article  ADS  Google Scholar 

  19. Yu. Panchenko, A. Puchikin, S. Yampolskaya, S. Bobrovnikov, E. Gorlov, and V. Zharkov, IEEE J. Quantum Electron. 57 (2), 1 (2021). https://doi.org/10.1109/JQE.2021.3049579

    Article  Google Scholar 

  20. S. A. Yampolskaya, A. G. Yastremskii, Y. N. Panchenko, A. V. Puchikin, and S. M. Bobrovnikov, IEEE J. Quantum Electron. 56 (2), 1 (2020). https://doi.org/10.1109/JQE.2020.2976532

    Article  Google Scholar 

  21. H. Li, Yu. N. Panchenko, M. V. Andreev, A. V. Puchikin, S. A. Yampolskaya, V. F. Losev, and S. S. Anufrick, Russ. Phys. J. 63, 2070 (2021). https://doi.org/10.1007/s11182-021-02276-8

    Article  Google Scholar 

  22. Y. N. Panchenko, N. G. Ivanov, and V. F. Losev, Quantum Electron. 35 (9), 816 (2005). https://doi.org/10.1070/QE2005v035n09ABEH010354

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (agreement no. 20-79-10297).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Panchenko.

Ethics declarations

The authors declare that there is no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchenko, Y.N., Puchikin, A.V., Yampolskaya, S.A. et al. Discharge KrF Laser with a High Specific Energy of Radiation. Tech. Phys. 67, 215–220 (2022). https://doi.org/10.1134/S1063784222040041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222040041

Keywords:

Navigation