Log in

Ab Initio Studies of the Influence of Pressure on the Structure and Electronic and Elastic Properties of Carbonates of Alkaline and Alkaline-Earth Metals

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of pressure on the structural, electronic and elastic properties of K2Ca(CO3)2, K2Mg(CO3)2, Na2Ca2(CO3)3, and Na2Mg(CO3)2 has been studied by methods of the density-functional theory with the gradient РВЕ functional and dispersion correction D3(BJ) in the basis of localized orbitals of the CRYSTAL17 package. Parameters of the equation of state have been determined in the third-order Berch–Murnaghan form; it is shown that the equilibrium volume and compressibility modulus depend linearly on the cation average radius. Under pressure, the widths of the upper valence bands increase maximally in K2Ca(CO3)2 and minimally in Na2Ca2(CO3)3, and the centroids of cationic states shift by ~0.2 eV. The calculated elastic constants and polycrystalline moduli are found to increase with a decrease in the cation average radius. The shear modulus for K2Ca(CO3)2 and K2Mg(CO3)2 decreases with an increase in pressure, which leads to anomalous behavior of the longitudinal and transverse velocities of an acoustic wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. F. Shatskii, K. D. Litasov, and Yu. N. Pal’yanov, Geol. Geofiz. 56, 149 (2015).

    Google Scholar 

  2. A. Bekhtenova, A. Shatskiy, I. V. Podborodnikov, A. V. Arefiev, and K. D. Litasov, Gondwana Res. 94, 86 (2021).

    Article  Google Scholar 

  3. I. S. Sharygin, A. V. Golovin, A. M. Dymshits, A. D. Kalugina, K. A. Solov’ev, V. G. Mal’kovets, and N. P. Pokhilenko, Dokl. Earth Sci. 500, 842 (2021).

    Article  ADS  Google Scholar 

  4. K. Zhang, X. S. Li, Y. Duan, D. L. King, P. Singh, and L. Li, Int. J. Greenhouse Gas Control 12, 351 (2013).

    Article  Google Scholar 

  5. Y. Duan, K. Zhang, X. S. Li, D. L. King, B. Li, L. Zhao, and Y. **ao, Aerosol Air Quality Res. 14, 470 (2014).

    Article  Google Scholar 

  6. Y. Song, M. Luo, D. Zhao, G. Peng, C. Lin, and N. Ye, J. Mater. Chem. C 5, 8758 (2017).

    Article  Google Scholar 

  7. A. Pabst, Am. Mineralog. 59, 353 (1974).

  8. K.-F. Hesse and B. Simons, Zeitschr. Kristallogr. 161, 289 (1982).

    Article  ADS  Google Scholar 

  9. A. Pabst, Am. Mineralog. 58, 211 (1973).

  10. B. Dickens, A. Hyman, and W. E. Brown, J. Res. Natl. Bureau Stand. - Phys. Chem. A 75, 129 (1971).

    Google Scholar 

  11. S. Rashchenko, A. Shatskiy, and K. Litasov, in Carbon in Earth’s Interior (Wiley, New York, 2020).

    Google Scholar 

  12. M. R. Hazen, D. R. Hummer, G. Hystad, R. T. Downs, and J. J. Golden, Am. Mineralog. 101, 889 (2016).

  13. A. Golubkova, M. Merlini, and M. W. Schmidt, Am. Mineralog. 100, 2458 (2015).

  14. A. Shatskiy, P. N. Gavryushkin, I. S. Sharygin, K. D. Litasov, I. N. Kupriyanov, Y. Higo, Y. M. Borzdov, K. Funakoshi, Y. N. Palyanov, and E. Ohtani, Am. Mineralog. 98, 2172 (2013).

  15. C. E. Vennari, B. C. Meavers, and Q. Williams, J. Geophys. Res.: Solid Earth 123, 6574 (2018).

    Article  ADS  Google Scholar 

  16. T. Inerbaev, P. Gavryushkin, K. Litasov, F. Abuova, and A. Akilbekov, Vestn. Karag. Univ., Ser. Fiz., No. 4 (88), 24 (2017).

  17. I. M. Kulikova, O. A. Nabelkin, V. A. Ivanov, and I. A. Filenko, Phys. Solid State 63, 1695 (2021).

    Article  ADS  Google Scholar 

  18. R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, and B. Kirtman, WIREs Comput. Mol. Sci. 8, e1360 (2018).

    Google Scholar 

  19. L. Valenzano, F. J. Torres, K. Doll, F. Pascale, C. M. Zicovich-Wilson, and R. Dovesi, Zeitschr. Phys. Chem. 220, 893 (2006).

    Google Scholar 

  20. R. Dovesi, C. Roetti, C. Freyria Fava, M. Prencipe, and V. R. Saunders, Chem. Phys. 156, 1 (1991).

    Article  Google Scholar 

  21. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  22. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  23. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  24. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  25. Yu. N. Zhuravlev and V. V. Atuchin, Nanomaterials 10, 2275 (2020).

    Article  Google Scholar 

  26. Yu. N. Zhuravlev and V. V. Atuchin, Sensors 21, 3644 (2021).

    Article  ADS  Google Scholar 

  27. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Grimme, A. Hansen, J. G. Brandenburg, and C. Bannwarth, Chem. Rev. 116, 5105 (2016).

    Article  Google Scholar 

  29. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  30. S. Grimme, S. Ehrlich, and L. Goerigk, Comput. Chem. 32, 1456 (2011).

    Article  Google Scholar 

  31. W. F. Perger, J. Criswell, B. Civalleri, and R. Dovesi, Comput. Phys. Commun. 180, 1753 (2009).

    Article  ADS  Google Scholar 

  32. A. Erba, A. Mahmoud, R. Orlando, and R. Dovesi, Phys. Chem. Miner. 41, 151 (2014).

    Article  ADS  Google Scholar 

  33. F. Birch, J. Geophys. Res. 83, 1257 (1978).

    Article  ADS  Google Scholar 

  34. A. Erba, A. Mahmoud, D. Belmonte, and R. Dovesi, J. Chem. Phys. 140, 124703 (2014).

    Article  ADS  Google Scholar 

  35. T. Bredow M. F. Peintinger, and D. V. Oliveira, J. Comput. Chem. 34, 451 (2013).

    Article  Google Scholar 

  36. H. Effenberger and H. Langhof, Acta Crystallogr., C 40, 1299 (1984).

    Article  Google Scholar 

  37. R. D. Shannon, Acta Crystallogr., A 32, 751 (1976).

    Article  ADS  Google Scholar 

  38. L. Zhang, Y. Wang, J. Lv, and Y. Ma, Nat. Rev. Mater. 2, 17005 (2017).

    Article  ADS  Google Scholar 

  39. J. A. Ross, M. Alvaro, and F. Nestola, Phys. Chem. Miner. 45, 95 (2018).

    Article  ADS  Google Scholar 

  40. Z. Q. Wu and W. Z. Wang, Sci. China Earth Sci. 59, 1107 (2016).

    Article  ADS  Google Scholar 

  41. F. Mouhat and F.-X. Coudert, Phys. Rev. B 90, 224104 (2014).

    Article  ADS  Google Scholar 

  42. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928), p. 978.

    MATH  Google Scholar 

  43. A. Reuss, Z. Angew. Math. Mech. 9, 4958 (1929).

    Article  Google Scholar 

  44. R. Hill, J. Mech. Phys. Solids 11, 357 (1963).

    Article  ADS  Google Scholar 

  45. Z. J. Wu, Zhao, E. J. **ang, H. P. Hao, X. F. Liu, and X. J. Meng, Phys. Rev. B 76, 054115 (2007).

    Article  ADS  Google Scholar 

  46. O. L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  ADS  Google Scholar 

  47. C. Sanchez-Valle, S. Ghosh, and A. Rosa, Geophys. Res. Lett. 38, L24315 (2011).

    Article  ADS  Google Scholar 

  48. J. P. Castagna, M. L. Batzle, and R. L. Eastwood, Geophysics 50, 571 (1985).

    Article  ADS  Google Scholar 

  49. Yu. N. Zhuravlev and D. V. Korabel’nikov, Mater. Today Commun. 28, 102509 (2021).

    Article  Google Scholar 

  50. Yu. N. Zhuravlev and D. V. Korabel’nikov, Solid State Commun. 346, 114706 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Zhuravlev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, Y.N. Ab Initio Studies of the Influence of Pressure on the Structure and Electronic and Elastic Properties of Carbonates of Alkaline and Alkaline-Earth Metals. Phys. Solid State 64, 405–415 (2022). https://doi.org/10.1134/S106378342208008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342208008X

Keywords:

Navigation