Log in

On the Thermal Stability of Some Quasi-Fullerenes

  • FULLERENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The thermal stability of recently predicted quasi-fullerenes С20, С42, С48, and С60 is studied by the method of molecular dynamics. The routes of their decomposition and the temperature dependences of their lifetimes are determined. The activation energy and frequency factor values that appear in the Arrhenius law are found. New isomers are detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. S. Iijima, Nature (London, U.K.) 354, 56 (1991).

    Article  ADS  Google Scholar 

  3. V. I. Kasatochkin, A. M. Sladkov, Yu. P. Kudryavtsev, N. M. Popov, and V. V. Korshak, Dokl. Akad. Nauk SSSR 177, 358 (1967).

    Google Scholar 

  4. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London, U.K.) 318, 162 (1985).

    Article  ADS  Google Scholar 

  5. D. Tománek and M. A. Schluter, Phys. Rev. Lett. 67, 2331 (1991).

    Article  ADS  Google Scholar 

  6. C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, Phys. Rev. B 47, 9878 (1993).

    Article  ADS  Google Scholar 

  7. R. O. Jones and G. Seifert, Phys. Rev. Lett. 79, 443 (1997).

    Article  ADS  Google Scholar 

  8. L. A. Openov and V. F. Elesin, JETP Lett. 68, 726 (1998).

    Article  ADS  Google Scholar 

  9. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 55, 1754 (2013).

    Article  ADS  Google Scholar 

  10. E. W. Godly and R. Taylor, Fullerenes Sci. Technol. 5, 1667 (1997).

    Article  Google Scholar 

  11. V. Georgakilas, J. A. Perman, J. Tucek, and R. Zbori, Chem. Rev. 115, 4744 (2015).

    Article  Google Scholar 

  12. L.-H. Gan, J.-Q. Zhao, and F. Pan, J. Mol. Struct.: THEOCHEM 953, 24 (2010).

    Article  Google Scholar 

  13. Z. Slanina, X. Zhao, and E. Osawa, Chem. Phys. Lett. 290, 311 (1998).

    Article  ADS  Google Scholar 

  14. B. I. Dunlap and R. Taylor, J. Phys. Chem. 98, 11018 (1994).

    Article  Google Scholar 

  15. E. A. Belenkov and I. V. Shakhova, Phys. Solid State 53, 2385 (2011).

    Article  ADS  Google Scholar 

  16. A. I. Kharlamov, G. A. Kharlamova, and M. E. Bondarenko, Russ. J. Appl. Chem. 86, 1174 (2013).

    Article  Google Scholar 

  17. C. A. Celaya, J. Muñiz, and L. E. Sansores, Comp. Theor. Chem. 1117, 20 (2017).

    Article  Google Scholar 

  18. E. M. Pearson, T. Halicioglu, and W. A. Tiller, Phys. Rev. A 32, 3030 (1985).

    Article  ADS  Google Scholar 

  19. C. Xu and G. E. Scuseria, Phys. Rev. Lett. 72, 669 (1994).

    Article  ADS  Google Scholar 

  20. J. Jellinek and A. Goldberg, J. Chem. Phys. 113, 2570 (2000).

    Article  ADS  Google Scholar 

  21. C. E. Klots, Z. Phys. D 20, 105 (1991).

    Article  ADS  Google Scholar 

  22. J. V. Andersen, E. Bonderup, and K. Hansen, J. Chem. Phys. 114, 6518 (2001).

    Article  ADS  Google Scholar 

  23. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).

    Article  Google Scholar 

  24. A. I. Podlivaev and L. A. Openov, Phys. Solid State 60, 162 (2018).

    Article  ADS  Google Scholar 

  25. K. S. Grishakov, K. P. Katin, and M. M. Maslov, Adv. Phys. Chem. 2016, 1862959 (2016).

    Article  Google Scholar 

  26. L. A. Openov and A. I. Podlivaev, Phys. Solid State 59, 1267 (2017).

    Article  ADS  Google Scholar 

  27. G. V. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant no. 18-02-00278-a) and by the Ministry of Education and Science of the Russian Federation within the Program for Competitive Growth of the National Research Nuclear University MIPhI. We thank J. Muñiz for providing detailed information on the atomic structure of quasi-fullerenes studied in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Podlivaev.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I., Openov, L.A. On the Thermal Stability of Some Quasi-Fullerenes. Phys. Solid State 61, 474–479 (2019). https://doi.org/10.1134/S1063783419030260

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419030260

Navigation