Log in

Peculiarities of Phase Formation in TbBO3 during Isothermal Annealing

  • PHASE TRANSITIONS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Detailed X-ray studies of changes in the structure of terbium orthoborate TbBO3 in the course of successive high-temperature isothermal annealing of the initial mixture in the form of an amorphous precursor and in the form of a homogenized mixture of microcrystalline Tb7O12 and B2O3 powders have been carried out. It is shown that the formation of TbBO3 crystals in both cases occurs through the formation of intermediate two-phase states. Particularly, the triclinic high-temperature ν-TbBO3 phase is formed already at the first crystallization stages (about 600°C) almost simultaneously with the equilibrium vaterite modification of TbBO3 (sp. gr. P63/mmc) during low-temperature annealing of an amorphous precursor, which transforms into the vaterite modification at an annealing temperature of 850°C. The phase of monoclinic terbium trioxoborate TbB3O6 is formed at the first stages of phase formation (about 800°C) almost simultaneously with the vaterite phase when the feedstock is annealed in the form of a homogenized mixture of microcrystalline Tb7O12 and B2O3 powders. It also transforms into the vaterite modification at an annealing temperature of 950°, which is preserved up to the highest annealing temperatures in the experiment (1200°C). A hypothetical explanation of the formation of such two-phase states during low-temperature annealing of the feedstock and their disappearance at higher annealing temperatures is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Z. Wei, L. Sun, C. Liao, J. Yin, X. Jiang, C. Yan, and S. Lü, J. Phys. Chem. B 106, 10610 (2002).

    Article  Google Scholar 

  2. H. Giesber, J. Ballato, W. Pennington, and J. Kolis, Inform. Sci. 149, 61 (2003).

    Article  Google Scholar 

  3. H. Giesber, J. Ballato, G. Chumanov, J. Kolis, and M. Dejneka, J. Appl. Phys. 93, 8987 (2003).

    Article  ADS  Google Scholar 

  4. T. Kim and S. Kang, Mater. Res. Bull. 40, 1945 (2005).

    Article  Google Scholar 

  5. J. Lin, Y. Huang, J. Zhang, X. Ding, S. Qi, and C. Tang, Mater. Lett. 61, 1596 (2007).

    Article  Google Scholar 

  6. L. Chen, Y. Jiang, S. Chen, G. Zhang, C. Wang, and G. Li, J. Lumin. 128, 2048 (2008).

    Article  Google Scholar 

  7. J. Dexpert-Ghys, R. Mauricot, B. Caillier, P. Guillot, T. Beaudette, G. Jia, P. Tanner, and B. Cheng, J. Phys. Chem. C 114, 6681 (2010).

    Article  Google Scholar 

  8. J. Li, Y. Wang, and B. Liu, J. Lumin. 130, 981 (2010).

    Article  Google Scholar 

  9. A. Szczeszak, S. Lis, and V. Nagirnyi, J. Rare Earths 29, 1142 (2011).

    Article  Google Scholar 

  10. Z. Yang, D. Yan, K. Zhu, Z. Song, X. Yu, D. Zhou, Z. Yin, and P. Qiu, J. Mater. Lett. 65, 1245 (2011).

    Article  Google Scholar 

  11. A. Szczeszak, T. Grzyb, S. Lis, and R. Wiglusz, J. Dalton Trans. 41, 5824 (2012).

    Article  Google Scholar 

  12. S. Choi, B.-Y. Park, and H.-K. Jung, J. Lumin. 131, 1460 (2011).

    Article  Google Scholar 

  13. C. R. Ronda, T. Jüstel, and H. Nikol, J. Alloys Compd. 275–277, 669 (1998).

    Article  Google Scholar 

  14. I. M. Shmytko, G. K. Strukova, and E. A. Kudrenko, Crystallogr. Rep. 51, S163 (2006).

    Article  ADS  Google Scholar 

  15. E. A. Kudrenko, I. M. Shmyt’ko, and G. K. Strukova, Phys. Solid State 50, 966 (2008).

    Article  ADS  Google Scholar 

  16. I. M. Shmyt’ko, E. A. Kudrenko, G. K. Strukova, and N. V. Klassen, Phys. Solid State 50, 1157 (2008).

    Article  ADS  Google Scholar 

  17. I. M. Shmyt’ko and G. K. Strukova, Phys. Solid State 51, 1907 (2009).

    Article  ADS  Google Scholar 

  18. I. Shmytko, G. Strukova, and E. Kudrenko, Acta Crystallogr. A 66, S230 (2010).

    Article  Google Scholar 

  19. I. M. Shmytko, I. N. Kiryakin, and G. K. Strukova, Phys. Solid State 53, 377 (2011).

    Article  ADS  Google Scholar 

  20. I. Shmytko, Acta Crystallogr., A 67, C533 (2011).

    Article  Google Scholar 

  21. V. V. Kedrov, I. M. Shmyt’ko, S. Z. Shmurak, E. A. Kudrenko, and N. V. Klassen, J. Mater. Res. 27, 2117 (2012).

    Article  ADS  Google Scholar 

  22. I. M. Shmyt’ko, I. N. Kiryakin, and G. K. Strukova, Phys. Solid State 55, 1463 (2013).

    Article  ADS  Google Scholar 

  23. E. A. Kudenko, I. M. Shmytko, and G. K. Strukova, Acta Crystallogr., A 64, C427 (2008).

    Article  Google Scholar 

  24. I. M. Shmytko, E. A. Kudrenro, G. K. Strukova, V. V. Kedrov, and N. V. Klassen, Z. Kristallogr. Suppl. 27, 211 (2008).

    Article  Google Scholar 

  25. E. A. Kudrenro, I. M. Shmytko, V. V. Synytzin, E. G. Ponyatovsky, and B. S. Red’kin, Z. Kristallogr. Suppl. 27, 205 (2008).

    Article  Google Scholar 

  26. A. Szczeszak, T. Grzyb, B. Barszcz, V. Nagirnyi, A. Kotlov, and S. Lis, Inorg. Chem. 52, 4934 (2013).

    Article  Google Scholar 

  27. L. Yang, L. Zhou, Y. Huang, and Z. Tang, Mater. Lett. 64, 2604 (2010).

    Google Scholar 

  28. J. Zhang and J. Lin, J. Chem. Phys. 271, 207 (2004).

    Google Scholar 

  29. X. Guo, Y. Wang, and J. Zhang, J. Cryst. Growth 311, 2409 (2009).

    Article  ADS  Google Scholar 

  30. E. M. Levin, R. S. Roth, and J. B. Martin, Am. Mineral. 46, 1030 (1961).

    Google Scholar 

  31. H. J. Meyer, Naturwissensch. 59, 215 (1972).

    Article  ADS  Google Scholar 

  32. K. K. Palkina, V. G. Kuznetsov, L. A. Butman, and B. F. Dzhurinskii, Acad. Sci. USSR 2, 286 (1976).

    Google Scholar 

  33. G. Corbel, M. Leblanc, E. Antic-Fidancev, M. Lemaître-Blaise, and J. C. Krupa, J. Alloys Compd. 287, 71 (1999).

    Article  Google Scholar 

  34. H. Huppertz, B. von der Eltz, R.-D. Hoffmann, and H. Piotrowski, J. Solid State Chem. 166, 203 (2002).

    Article  ADS  Google Scholar 

  35. S. Noirault, O. Joubert, M. T. Caldes, and Y. Piffard, Acta Crystallogr. E 62, i228 (2006).

    Article  Google Scholar 

  36. Teng-Teng **, Zhi-Jun Zhang, Hui Zhang, and **g-Tai Zhao, J. Inorg. Mater. 28, 1154 (2013).

    Google Scholar 

  37. M. Yin, G. Corbel, M. Leblanc, E. Antic-Fidancev, and J. C. Krupa, J. Alloys Compd. 302, 12 (2000).

    Article  Google Scholar 

  38. A. Goryunova, Doctoral Dissertation (Univ. Köln, Köln, 2003).

  39. L. L. Cao, Y. Y. Chen, C. J. Lin, Z. B. Shen, F. Y. Guo, J. Ye, and J. Z. Chen, Adv. Mater. Res. 306–307, 416 (2011).

    Article  Google Scholar 

  40. A. P. Kiselev, S. Z. Shmurak, B. S. Red’kin, V. V. Sinitsyn, I. M. Shmyt’ko, E. A. Kudrenko, and E. G. Ponyatovskii, Phys. Solid State 48, 1544 (2006).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank G.K. Strukova for her assistance in the synthesis of the amorphous precursor state of TbBO3. This work was carried out within the framework of the research plan of Institute of Solid State Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Shmyt’ko.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmyt’ko, I.M. Peculiarities of Phase Formation in TbBO3 during Isothermal Annealing. Phys. Solid State 61, 207–213 (2019). https://doi.org/10.1134/S1063783419020276

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419020276

Navigation