Log in

Structural and Electric Characteristics of Two-Layer Bi4Ti3O12/(Ba,Sr)TiO3 Thin Films Deposited on a Silicon Substrate by Radio-Frequency Sputtering at Increased Oxygen Pressures

  • FERROELECTRICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The 400–450-nm-thick Bi4Ti3O12 thin films with various orientations of crystallites with respect to a normal to the (100)Si substrate plane have been studied. It is established that the crystallite orientation can be controlled by varying the composition of the 4-nm-thick BaxSr1 – xTiO3 sublayer. The use of Ba0.4Sr0.6TiO3 as a sublayer leads to the growth of the Bi4Ti3O12 film in the single-crystal state with plane (001) parallel to the substrate plane and with a monoclinic distortion of the crystal structure. The Ba0.8Sr0.2TiO3 sublayer is shown to lead to the formation of four crystallite orientations: (111), (117), (100), and (110) and two groups of domains in the Bi4Ti3O12 film; the first group with the polarization direction p-erpendicularly to the substrate and the second group with the polarization directed in the angular range 45.2°–57° with respect to a normal to the substrate. It is shown that, in the Bi4Ti3O12 film with the Ba0.8Sr0.2TiO3 sublayer, the polarization is directed to the substrate and is switched to new stable state with the polarization direction from the substrate when applying an external voltage higher than a critical one (4 V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. Mukhortov, V. Dudkevich, S. Tolstousov, and E. Fesenko, Ferroelectr. Lett. 1, 51 (1983).

    Article  Google Scholar 

  2. B.-E. Park, S. Imada, E. Tokumitsu, and H. Ishiwara, J. Korean Phys. Soc. 32, S1390 (1998).

    Google Scholar 

  3. J. Scott and C. P. de Araujo, Science (Washington, DC, U. S.) 246, 1400 (1989).

    Article  ADS  Google Scholar 

  4. S. Y. Wu, IEEE Trans. Electron Dev. 21, 499 (1974).

    Article  ADS  Google Scholar 

  5. K. A. Vorotilov and A. S. Sigov, Phys. Solid State 54, 894 (2012).

    Article  ADS  Google Scholar 

  6. V. I. Petrovsky, A. S. Sigov, and K. A. Vorotilov, Integr. Ferroelectr. 3, 59 (1993).

    Article  Google Scholar 

  7. B.-E. Park and H. Ishiwara, Ferroelectrics 293, 145 (2003).

    Google Scholar 

  8. M. D. McDaniel, T. Q. Ngo, S. Hu, A. B. Posadas, A. A. Demkov, and J. G. Ekerdt, Appl. Phys. Rev. 2, 041301 (2015).

    Article  ADS  Google Scholar 

  9. J. H. Ngai, D. P. Kumah, C. H. Ahn, and F. J. Walker, Appl. Phys. Lett. 104, 062905 (2014).

    Article  ADS  Google Scholar 

  10. T. Q. Ngo, A. B. Posadas, M. D. McDaniel, C. Hu, J. Bruley, E. T. Yu, A. A. Demkov, and J. G. Ekerdt, Appl. Phys. Lett. 104, 082910 (2014).

    Article  ADS  Google Scholar 

  11. F. Niu and B. W. Wessels, J. Vac. Sci. Technol. B 25, 1053 (2007).

    Article  Google Scholar 

  12. V. Vaithyanathan, J. Lettieri, W. Tian, A. Sharan, A. Vasudevarao, Y. L. Lid, A. Kochhar, H. Ma, J. Levy, P. Zschack, J. C. Woicik, L. Q. Chen, V. Gopalan, and D. G. Schlom, J. Appl. Phys. 100, 024108 (2006).

    Article  ADS  Google Scholar 

  13. C. A. Paz de Araujo, J. D. Cuchiaro, L. D. Mcmillan, M. C. Scott, and J. F. Scott, Lett. Nature 374, 627 (1995).

    Article  ADS  Google Scholar 

  14. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Joe, Lett. Nature 401, 682 (1999).

    Article  ADS  Google Scholar 

  15. H. Wang and M. Ren, J. Mater. Res. 21, 1782 (2006).

    Article  ADS  Google Scholar 

  16. O. Khorkhordin, C. Yeh, B. Kalkofen, and E. Burte, J. Cryst. Proc. Technol. 5, 49 (2015).

    Google Scholar 

  17. K.-H. Chen, C.-C. Diao, C.-F. Yang, and B.-X. Wang, Ferroelectrics 385, 46 (2009).

    Google Scholar 

  18. V. M. Mukhortov and Yu. I. Yuzyuk, Heterostructures Based on One-Dimensional Ferroelectric Films: Production, Properties, and Application (YuNTs RAN, Rostov-on-Don, 2008) [in Russian].

  19. A. D. Rae, J. G. Thompson, R. L. Withers, and A. C. Willis, Acta Crystallogr., B 46, 474 (1990).

    Article  Google Scholar 

  20. P. R. Graves, G. Hua, S. Myhra, and J. G. Thompson, J. Solid State Chem. 114, 112 (1995).

    Article  ADS  Google Scholar 

  21. H. Idink, V. Srikanth, W. B. White, and E. C. Subbarao, J. Appl. Phys. 76, 1819 (1994).

    Article  ADS  Google Scholar 

  22. S. Kojima, R. Imaizumi, S. Hamazaki, and M. Takashige, Jpn. J. Appl. Phys. 33, 5559 (1994).

    Article  ADS  Google Scholar 

  23. S. V. Biryukov, Yu. I. Golovko, S. I. Masychev, V. M. Mukhortov, and A. P. Shelepo, Tech. Phys. 54, 1176 (2009).

    Article  Google Scholar 

  24. D. A. Kiseleva, A. L. Kholkin, A. A. Bogomolov, O. N. Sergeeva, E. Yu. Kaptelov, and I. P. Pronin, Tech. Phys. Lett. 34, 646 (2008).

    ADS  Google Scholar 

  25. V. M. Mukhortov, Yu. I. Golovko, A. V. Pavlenko, D. V. Stryukov, S. V. Biryukov, A. P. Kovtun, and S. P. Zinchenko, Phys. Solid State 60, 1786 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out in the framework of State task (project no. 0120-1354-247) and supported by the Russian Foundation for Basic Research (project no. 16-29-14013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Mukhortov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anokhin, A.S., Biryukov, S.V., Golovko, Y.I. et al. Structural and Electric Characteristics of Two-Layer Bi4Ti3O12/(Ba,Sr)TiO3 Thin Films Deposited on a Silicon Substrate by Radio-Frequency Sputtering at Increased Oxygen Pressures. Phys. Solid State 61, 139–144 (2019). https://doi.org/10.1134/S1063783419020033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419020033

Navigation