Log in

Simulation of Carrier Trap** in an Embedded Nanowire and Its Effect in the Nano-EBIC Technique

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Effect of an isolated Ge nanowire embedded in an n-doped Si on electron beam induced current is simulated by a Monte Carlo calculation algorithm. A circular nano-contact is used to collect the current generated by the use of primary energy of 5 or 10 keV in a perpendicular configuration along a line passing through the contact center. The nanowire, considered as a recombination center, is vertically positioned beneath the contact. Calculation takes into account various parameters such as a nano-scale depletion zone under the nano-contact, the depth of the nanowire, and its size. The surface recombination velocity is taken equal to zero. Competition between both carriers collected by the nano-contact and those captured by the nanowire is studied. Both processes are affected by the depth of the nanowire and by the primary energy. Moreover, the nanowire–Si contact behaves as a nano-scale hetero-junction, and hole storage in the nanowire leads to accentuation of energy band bending, especially in the longitudinal direction of the nanowire. Consequently, tunnel recombination would be present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Tiwari, F. Rana, H. Hanfi, A. Hartstein, E. F. Crabbé, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996).

    Article  ADS  Google Scholar 

  2. L. M. Ostraat, J. W. de Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, Appl. Phys. Lett. 79, 433 (2001).

    Article  ADS  Google Scholar 

  3. P. F. Lee, X. B. Lu, J. Y. Dai, H. L. W. Chan, E. Jelenkovic, and K. Y. Tong, Nanotechnology 17, 1202 (2006).

    Article  ADS  Google Scholar 

  4. Q. Wan, C. L. Lin, W. L. Liu, and T. H. Wang, Appl. Phys. Lett. 82, 4708 (2003).

    Article  ADS  Google Scholar 

  5. K. Das, M. Nanda Goswami, R. Mahapatra, G. S. Kar, A. Dhar, H. N. Acharya, S. Maikap, J. H. Lee, and S. K. Ray, Appl. Phys. Lett. 84, 1386 (2004).

    Article  ADS  Google Scholar 

  6. A. El Hdiy, K. Gacem, M. Troyon, A. Ronda, F. Bassani, and I. Berbezier, J. Appl. Phys. 104, 063716 (2008).

    Article  ADS  Google Scholar 

  7. I. B. Akca, A. Dâna, A. Aydinli, and R. Turan, Appl. Phys. Lett. 92, 052103 (2008).

    Article  ADS  Google Scholar 

  8. J. C. Wang, C. T. Lin, and C. F. Chang, Curr. Appl. Phys. 14, 232 (2014).

    Article  ADS  Google Scholar 

  9. X. J. Liu, L. Zhu, M. Y. Gao, X. F. Li, Z. Y. Cao, H. F. Zhai, A. D. Li, and D. Wu, Appl. Surf. Sci. 289, 332 (2014).

    Article  ADS  Google Scholar 

  10. X. H. Qiu, G. C. Qi, Y. L. Yang, and C. Wang, J. Solid State Chem. 181, 1670 (2008).

    Article  ADS  Google Scholar 

  11. C. Dumas, L. Ressier, J. Grisolia, A. Arbouet, V. Paillard, G. Ben Assayag, S. Schamm, and P. Normand, Microelectron. Eng. 85, 2358 (2008).

    Article  Google Scholar 

  12. K. Gacem, A. El Hdiy, M. Troyon, I. Berbezier, and A. Ronda, Nanotechnology 21, 065706 (2010).

    Article  ADS  Google Scholar 

  13. A. Marchand, A. El Hdiy, M. Troyon, G. Amiard, A. Ronda, and I. Berbezier, Appl. Phys. Lett. 100, 163117 (2012).

    Article  ADS  Google Scholar 

  14. A. Marchand and A. El Hdiy, J. Appl. Phys. 117, 154302 (2015).

    Article  ADS  Google Scholar 

  15. Q. T. Doan and A. El Hdiy, J. Appl. Phys. 117, 115704 (2015).

    Article  ADS  Google Scholar 

  16. L. Ledra and A. El Hdiy, J. Appl. Phys. 118, 115705 (2015).

    Article  ADS  Google Scholar 

  17. Q. T. Doan, A. El Hdiy, X. N. Duong, C. C. Duong, and L. T. Nguyen, Superlatt. Microstruct. 109, 273 (2017).

    Article  ADS  Google Scholar 

  18. A. El Hdiy, Solid-State Electron. 146, 34 (2018).

    Article  ADS  Google Scholar 

  19. Studies in Penetration of Charged Particles in Matter, Ed. by U. Fano (Natl. Acad. Sci., Washington, 1964).

    Google Scholar 

  20. Use of Monte Carlo Calculation in Electron Probe Microanalysis and Scanning Electron Microscopy, Ed. by K. F. J. Heinrich, D. E. Newbury, and H. Yakowitz (Special Publ., Washington, 1976).

    Google Scholar 

  21. G. Love, M. G. C. Cox, and V. D. Scott, J. Appl. D: Appl. Phys. 10, 7 (1977).

    Google Scholar 

  22. D. Liljequist, J. Phys. D: Appl. Phys. 16, 1567 (1983).

    Article  ADS  Google Scholar 

  23. L. Reimer and D. Stelter, Scanning 8, 265 (1986).

    Article  Google Scholar 

  24. Electron Microscopy and X-ray Microanalysis (Kluwer Academic, Plenum, New York, 1986).

  25. D. C. Joy, Inst. Phys. Conf. Ser. 93, 23 (1988).

  26. D. C. Joy and S. Lou, Scanning 11, 176 (1989).

    Article  Google Scholar 

  27. D. C. Joy, Scan. Electron. Microsc. 5, 329 (1991).

    ADS  Google Scholar 

  28. R. Shimizu and Z. J. Ding, Rep. Prog. Phys. 55, 487 (1992).

    Article  ADS  Google Scholar 

  29. A. El Hdiy, Superlatt. Microstruct. 100, 641 (2016).

    Article  ADS  Google Scholar 

  30. C. A. Klein, J. Appl. Phys. 39, 2029 (1968).

    Article  ADS  Google Scholar 

  31. Q. T. Doan, A. El Hdiy, and M. Troyon, J. Appl. Phys. 110, 124515 (2011).

    Article  ADS  Google Scholar 

  32. T. E. Everhart and P. H. Hoff, J. Appl. Phys. 42, 5837 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El Hdiy.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hdiy, A., Ledra, M. Simulation of Carrier Trap** in an Embedded Nanowire and Its Effect in the Nano-EBIC Technique. Semiconductors 55, 56–60 (2021). https://doi.org/10.1134/S106378262101005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262101005X

Keywords:

Navigation