Log in

On the Formation of Amorphous Ge Nanoclusters and Ge Nanocrystals in GeSixOy Films on Quartz Substrates by Furnace and Pulsed Laser Annealing

  • MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Nonstoichiometric GeO0.5[SiO2]0.5 and GeO0.5[SiO]0.5 germanosilicate glassy films are produced by the high-vacuum coevaporation of GeO2 and either SiO or SiO2 powders with deposition onto a cold fused silica substrate. Then the films are subjected to furnace or laser annealing (a XeCl laser, λ = 308 nm, pulse duration of 15 ns). The properties of the samples are studied by transmittance and reflectance spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy. As shown by analysis of the Raman spectra, the GeO[SiO] film deposited at a substrate temperature of 100°C contains amorphous Ge clusters, whereas no signal from Ge–Ge bond vibrations is observed in the Raman spectra of the GeO[SiO2] film deposited at the same temperature. The optical absorption edge of the as-deposited GeO[SiO2] film corresponds to ~400 nm; at the same time, in the GeO[SiO] film, absorption is observed right up to the near-infrared region, which is apparently due to absorption in Ge clusters. Annealing induces a shift of the absorption edge to longer wavelengths. After annealing of the GeO[SiO2] film at 450°C, amorphous germanium clusters are detected in the film, and after annealing at 550°C as well as after pulsed laser annealing, germanium nanocrystals are detected. The crystallization of amorphous Ge nanoclusters in the GeO[SiO] film requires annealing at a temperature of 680°C. In this case, the size of Ge nanoclusters in this film are smaller than that in the GeO[SiO2] film. It is not possible to crystallize Ge clusters in the GeO[SiO] film. It seems obvious that the smaller the semiconductor nanoclusters in an insulating matrix, the more difficult it is to crystallize them. In the low-temperature photoluminescence spectra of the annealed films, signals caused by either defects or Ge clusters are detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, Appl. Phys. Rev. 1, 011302 (2014).

    Article  ADS  Google Scholar 

  2. Zhenyi Ni, Shu Zhou, Shuangyi Zhao, Wenbing Peng, DerenYang, and **aodong Pi, Mater. Sci. Eng. R 138, 85 (2019).

    Article  Google Scholar 

  3. V. A. Volodin, G. N. Kamaev, V. A. Gritsenko, A. A. Gismatulin, A. Chin, and M. Vergnat, Appl. Phys. Lett. 114, 233104 (2019).

    Article  ADS  Google Scholar 

  4. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, Appl. Phys. Lett. 59, 3168 (1991).

    Article  ADS  Google Scholar 

  5. L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzò, and F. Priolo, Nature (London, U.K.) 408, 440 (2000).

    Article  ADS  Google Scholar 

  6. V. A. Volodin, E. B. Gorokhov, M. D. Efremov, D. V. Marin, and D. A. Orekhov, JETP Lett. 77, 411 (2003).

    Article  ADS  Google Scholar 

  7. E. B. Gorokhov, V. A. Volodin, D. V. Marin, D. A. Orekhov, A. G. Cherkov, A. K. Gutakovskii, V. A. Shvets, A. G. Borisov, and M. D. Efremov, Semiconductors 39, 1168 (2005).

    Article  ADS  Google Scholar 

  8. X. Wang, L. C. Kimerling, J. Michel, and J. Liu, Appl. Phys. Lett. 102, 131116 (2013).

    Article  ADS  Google Scholar 

  9. V. A. Volodin and L. V. Sokolov, JETP Lett. 101, 419 (2015).

    Article  ADS  Google Scholar 

  10. V. A. Volodin, V. A. Timofeev, A. R. Tuktamyshev, and A. I. Nikiforov, JETP Lett. 105, 327 (2017).

    Article  ADS  Google Scholar 

  11. V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schröter, Appl. Phys. Lett. 84, 2106 (2004).

    Article  ADS  Google Scholar 

  12. M. Ardyanian, H. Rinnert, and M. Vergnat, J. Lumin. 129, 729 (2009).

    Article  Google Scholar 

  13. S. G. Cherkova, V. A. Volodin, V. A. Skuratov, M. Stoffel, H. Rinnert, and M. Vergnat, J. Lumin. 207, 209 (2019).

    Article  Google Scholar 

  14. M. P. Gambaryan, G. K. Krivyakin, S. G. Cherkova, M. Stoffel, H. Rinnert, M. Vergnat, and V. A. Volodin, Phys. Solid State 62 (3) (2020, in press).

  15. S. Takeoka, K. Toshikiyo, M. Fujii, Shinji Hayashi, and Keiichi Yamamoto, Phys. Rev. B 61, 15988 (2000).

    Article  ADS  Google Scholar 

  16. A. Nyrow, C. Sternemann, C. J. Sahle, A. Hohl, M. Zschintzsch-Diase, A. Schwamberger, K. Mende, I. Brinkman, M. Maretti Sala, and R. Wagner, Nanotechnology 24, 165701 (2013).

    Article  ADS  Google Scholar 

  17. X. D. Pi and U. Kortshagen, Nanotechnology 20, 295602 (2009).

    Article  Google Scholar 

  18. V. A. Volodin, D. V. Marin, H. Rinnert, and M. Vergnat, J. Phys. D: Appl. Phys. 46, 275305 (2013).

    Article  ADS  Google Scholar 

  19. V. A. Volodin, M. P. Gambaryan, A. G. Cherkov, V. I. Vdovin, M. Stoffel, H. Rinnert, and M. Vergnat, J. Exp. Theor. Phys. 121, 1076 (2015).

    Article  ADS  Google Scholar 

  20. V. A. Volodin, M. P. Gambaryan, A. G. Cherkov, M. Stoffel, H. Rinnert, and M. Vergnat, Mater. Res. Express 3, 085019 (2016).

    Article  ADS  Google Scholar 

  21. V. A. Volodin, A. G. Cherkov, A. Kh. Antonenko, M. Stoffel, H. Rinnert, and M. Vergnat, Mater. Res. Express 4, 075010 (2017).

    Article  ADS  Google Scholar 

  22. M. Ardyanian, H. Rinnert, and M. Vergnat, J. Appl. Phys. 100, 113106 (2006).

    Article  ADS  Google Scholar 

  23. M. Ardyanian, H. Rinnert, X. Devaux, and M. Vergnat, Appl. Phys. Lett. 89, 011902 (2006).

    Article  ADS  Google Scholar 

  24. D. V. Marin, V. A. Volodin, E. B. Gorokhov, D. V. Shcheglov, A. V. Latyshev, M. Vergnat, J. Koch, and B. N. Chichkov, Tech. Phys. Lett. 36, 439 (2010).

    Article  ADS  Google Scholar 

  25. D. M. Zhigunov, G. N. Kamaev, P. K. Kashkarov, and V. A. Volodin, Appl. Phys. Lett. 113, 023101 (2018).

    Article  ADS  Google Scholar 

  26. W. Wihl, M. Cardona, and J. Tauc, J. Non-Cryst. Solids 8–10, 172 (1972).

  27. D. V. Marin, V. A. Volodin, H. Rinnert, and M. Vergnat, JETP Lett. 95, 424 (2012).

    Article  ADS  Google Scholar 

  28. J. H. Parker, Jr., D. W. Feldman, and M. Ashkin, Phys. Rev. 155, 712 (1967).

    Article  ADS  Google Scholar 

  29. V. A. Volodin, D. V. Marin, V. A. Sachkov, E. B. Gorokhov, H. Rinnert, and M. Vergnat, J. Exp. Theor. Phys. 118, 65 (2014).

    Article  ADS  Google Scholar 

  30. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  ADS  Google Scholar 

  31. V. A. Volodin, Zhang Rui, G. K. Krivyakin, A. Kh. Antonenko, M. Stoffel, H. Rinnert, and M. Vergnat, Semiconductors 52, 1178 (2018).

    Article  ADS  Google Scholar 

  32. S. Yamaguchi, N. Sugh, K. Nakagawa, and M. Miyao, Mater. Res. Soc. Symp. Proc. 557, 225 (1999).

    Article  Google Scholar 

  33. V. A. Volodin, G. K. Krivyakin, G. D. Ivlev, S. L. Prokop’ev, S. V. Gusakova, and A. A. Popov, Semiconductors 53, 400 (2019).

    Article  ADS  Google Scholar 

  34. F. Vega, R. Serna, C. N. Afonso, D. Bermejo, and G. Tejeda, J. Appl. Phys. 75, 7287 (1994).

    Article  ADS  Google Scholar 

  35. V. A. Volodin, M. D. Efremov, V. A. Gritsenko, and S. A. Kochubei, Appl. Phys. Lett. 73, 1212 (1998).

    Article  ADS  Google Scholar 

  36. V. A. Volodin, T. T. Korchagina, J. Koch, and B. N. Chichkov, Phys. E (Amsterdam, Neth.) 42, 1820 (2010).

Download references

ACKNOWLEDGMENTS

V.A. Volodin acknowledges the administration of Universitè de Lorraine for giving the opportunity to visit. We thank the Multiple-Access Center “High Technologies and Analytics of Nanosystems”, Novosibirsk State University, for placing at our disposal equipment for recording the Raman spectra.

Funding

The study was supported by the government of the Russian Federation in accordance with the government order, Program of Basic Research for the Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, no. 0306-2019-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Volodin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang Fan, Kochubey, S.A., Stoffel, M. et al. On the Formation of Amorphous Ge Nanoclusters and Ge Nanocrystals in GeSixOy Films on Quartz Substrates by Furnace and Pulsed Laser Annealing. Semiconductors 54, 322–329 (2020). https://doi.org/10.1134/S1063782620030070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620030070

Keywords:

Navigation