Log in

Capacitance spectroscopy of hole traps in high-resistance gallium-arsenide structures grown by liquid-phase epitaxy

  • XXI International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 13–16, 2017
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Three deep acceptor levels with activation energies of ~0.7, ~0.41, and ~0.16 eV are found in GaAs structures, which have the hole type of conductivity and are grown by liquid-phase epitaxy, by the methods of capacitance spectroscopy (admittance spectroscopy and deep-level transient spectroscopy). The first two levels are known as HL2 and HL5 and are related to the features of GaAs-layer growth by liquid-phase epitaxy. They are effective recombination centers determining reverse currents in p–i–n diodes, which is confirmed by studying the temperature dependences of reverse currents. The level with the energy Ev + 0.16 eV can be related to the two-charge acceptor level of the inherent antisite defect in GaAs, which also determines the do** concentration of structures in the singly charged state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Voitovich, A. Dumanevich, and A. Gordeev, Sovrem. Elektron., No. 6, 10 (2014).

    Google Scholar 

  2. S. Bellone, G. Cocorullo, F. G. della Corte, H. L. Hartnageland, and G. Schweeger, Solid State Electron. 35, 821 (1992).

    Article  ADS  Google Scholar 

  3. M. M. Sobolev, P. R. Brunkov, S. G. Konnikov, M. N. Stepanova, V. G. Nikitin, V. P. Ulin, A. Sh. Dolbaya, T. D. Kamushadze, and R. Maisuradze, Sov. Phys. Semicond. 25, 637 (1991).

    Google Scholar 

  4. P. N. Brunkov, S. Gaibullaev, S. G. Konnikov, V. G. Nikitin, M. I. Papentsev, and M. M. Sobolev, Sov. Phys. Semicond. 25, 205 (1991).

    Google Scholar 

  5. L. S. Berman, V. G. Danil’chenko, V. I. Korol’kov, and F. Yu. Soldatenkov, Semiconductors 34, 541 (2000).

    Article  ADS  Google Scholar 

  6. O. Korolkov, J. Toompuu, and T. Rang, Elektron. Elektrotekh. 19, 1392 (2013).

    Google Scholar 

  7. Ya. Toompuu, O. Korol’kov, N. Slepchuk, and T. Rang, Elektron. Elektrotekh., No. 4, 51 (2010).

    Google Scholar 

  8. V. L. Kryukov, E. V. Kryukov, L. A. Meerovich, S. S. Strel’chenko, and K. A. Titivkin, RF Patent No. 2488911 C1, Application No. 2012110151/28 (2012).

    Google Scholar 

  9. D. L. Losee, J. Appl. Phys. 46, 2204 (1975).

    Article  ADS  Google Scholar 

  10. J. L. Pautrat, B. Katirciogli, N. Magnea, D. Bensahel, J. C. Pfistert, and L. Revioil, Solid State Electron. 23, 1159 (1980).

    Article  ADS  Google Scholar 

  11. D. V. Lang, J. Appl. Phys. 45, 3023 (1974).

    Article  ADS  Google Scholar 

  12. L. S. Berman and A. A. Lebedev, Capacitive Spectroscopy of Deep-Level Centers in Semiconductors (Nauka, Leningrad, 1981) [in Russian].

    Google Scholar 

  13. G. Roos, A. Schoner, G. Pencl, K. Krambrock, and B. K. Meyer, Mater. Sci. Forum 38–41, 951 (1989).

    Article  Google Scholar 

  14. Phil Won Yu, W. C. Mitchel, M. G. Mier, S. S. Li, and W. L. Wang, Appl. Phys. Lett. 41, 532 (1982).

    Article  ADS  Google Scholar 

  15. S. R. Forrest and O. K. Kim, J. Appl. Phys. 53, 5738 (1982).

    Article  ADS  Google Scholar 

  16. A. Dargis and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Sci. Encyclopedia, Vilnus, 1994).

    Google Scholar 

  17. A. Czerwinski, E. Simoen, A. Poyai, and C. Claeys, J. Appl. Phys. 94, 1218 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Surovegina.

Additional information

Original Russian Text © A.V. Murel, V.B. Shmagin, V.L. Krukov, S.S. Strelchenko, E.A. Surovegina, V.I. Shashkin, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 11, pp. 1538–1542.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murel, A.V., Shmagin, V.B., Krukov, V.L. et al. Capacitance spectroscopy of hole traps in high-resistance gallium-arsenide structures grown by liquid-phase epitaxy. Semiconductors 51, 1485–1489 (2017). https://doi.org/10.1134/S1063782617110197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617110197

Navigation