Log in

Study of silicon doped with zinc ions and annealed in oxygen

  • Surfaces, Interfaces, and Thin Films
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of studies of the surface layer of silicon and the formation of precipitates in Czochralski n-Si (100) samples implanted with 64Zn+ ions with an energy of 50 keV and a dose of 5 × 1016 cm–2 at room temperature and then oxidized at temperatures from 400 to 900°C are reported. The surface is visualized using an electron microscope, while visualization of the surface layer is conducted via profiling in depth by elemental map** using Auger electron spectroscopy. The distribution of impurity ions in silicon is analyzed using a time-of-flight secondary-ion mass spectrometer. Using X-ray photoelectron spectroscopy, the chemical state of atoms of the silicon matrix and zinc and oxygen impurity atoms is studied, and the phase composition of the implanted and annealed samples is refined. After the implantation of zinc, two maxima of the zinc concentration, one at the wafer surface and the other at a depth of 70 nm, are observed. In this case, nanoparticles of the Zn metal phase and ZnO phase, about 10 nm in dimensions, are formed at the surface and in the surface layer. After annealing in oxygen, the ZnO · Zn2SiO4 and Zn · ZnO phases are detected near the surface and at a depth of 50 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metal Oxide Nanostructures and Their Applications, Ed. by A. Umar and Y.-B. Hahn (Chonbuk Natl. Univ., South Korea, 2010).

  2. C. Jiang, X. Sun, G. Lo, et al., Appl. Phys. Lett. 90, 263501 (2007).

    Article  ADS  Google Scholar 

  3. O. Eryu, K. Murakami, K. Takita, and K. Masuda, Nucl. Instrum. Methods Phys. Res. B 33, 665 (1988).

    Article  ADS  Google Scholar 

  4. G. Zollo, M. Kalitzova, D. Manno, and G. Vitali, J. Phys. D: Appl. Phys. 37, 2730 (2004).

    Article  ADS  Google Scholar 

  5. I. Muntele, P. Thevenard, C. Muntele, B. Chhay, and B. D. Ila, Mater. Res. Symp. Proc. 829, paper B.2.21 (2005).

    Google Scholar 

  6. C. Li, Y. Yang, X. Sun, W. Lei, X. Zhang, B. Wang, J. Wang, B. Tay, J. Ye, and G. Lo, Nanotechnology 18, 135604 (2007).

    Article  ADS  Google Scholar 

  7. S. Chu, M. Olmedo, Zh. Yang, J. Kong, Z. Yang, and J. Liu, Appl. Phys. Lett. 93, 181106 (2008).

    Article  ADS  Google Scholar 

  8. C. Li, G. Beirne, G. Kamita, G. Lakhwani, J. Wang, and N. Greenham, J. Appl. Phys. 116, 114501 (2014).

    Article  ADS  Google Scholar 

  9. G. P. Smestad and M. Gratzel, J. Chem. Educ. 75, 752 (1998).

    Article  Google Scholar 

  10. T. Tietze, P. Audehm, Y.-C. Chen, G. Schütz, B. Straumal, S. Protasova, A. Mazilkin, P. Straumal, T. Prokscha, H. Luetkens, Z. Salman, A. Suter, B. Baretzky, K. Fink, W. Wenzel, D. Danilov, and E. Goering, Sci. Rep. 5, 8871 (2015). doi 10.1038/srep08871

    Article  ADS  Google Scholar 

  11. J. Dodds, F. Meyers, and K. Loh, Smart Struct. Syst. 12, 0.55 (2013).

  12. P. Chang, Digest J. Nanomater. Biostruct. 9, 777 (2014).

    Google Scholar 

  13. C. Liu, H. Zhao, Y. Shen, G. Jia, J. Wang, and Z. Mu, Nucl. Instrum. Methods Phys. Res. B 326, 23 (2014).

    Article  ADS  Google Scholar 

  14. V. Privezentsev, V. Kulikauskas, A. Palagushkin, E. Steinman, A. Tereshchenko, A. Batrakov, and S. Ksenich, Solid State Phenom. 242, 369 (2016).

    Google Scholar 

  15. V. V. Privezentsev, E. P. Kirilenko, A. N. Goryachev, and A. V. Lutzau, in Proceedings of the 23th International Symposium on Nanostructures: Physics and Technology NANO2016, St. Petersburg, Russia, June 22–26, 2015 (St. Petersburg, 2015), p. 49.

    Google Scholar 

  16. A. Milnes, Deep Impurities in Semiconductors (Wiley, New York, 1973).

    Google Scholar 

  17. The NIST X-ray Photoelectron Spectroscopy Database. Version 4.1. http://srdata.nist.gov/xps.

  18. Z. Jiang and R. A. Brown, Phys. Rev. Lett. 74, 2046 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Privezentsev.

Additional information

Original Russian Text © V.V. Privezentsev, E.P. Kirilenko, A.N. Goryachev, A.A. Batrakov, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 2, pp. 187–192.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privezentsev, V.V., Kirilenko, E.P., Goryachev, A.N. et al. Study of silicon doped with zinc ions and annealed in oxygen. Semiconductors 51, 178–183 (2017). https://doi.org/10.1134/S1063782617020154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617020154

Navigation