Log in

Photoelectric characteristics of metal-Ga2O3-GaAs structures

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We investigate the effect of thermal annealing in argon and of oxygen plasma processing on the photoelectric properties of GaAs-Ga2O3-Me structures. Gallium-oxide films are fabricated by photostimulated electrochemical oxidation of epitaxial gallium-arsenide layers with n-type conductivity. The as-deposited films were amorphous, but their processing in oxygen plasma led to the nucleation of β-Ga2O3 crystallites. The unannealed films are nontransparent in the visible and ultraviolet (UV) ranges and there is no photocurrent in structures based on them. After annealing at 900°C for 30 min, the gallium-oxide films contain only β-Ga2O3 crystallites and become transparent. Under illumination of the Ga2O3-GaAs structures with visible light, the photocurrent appears. This effect can be attributed to radiation absorption in GaAs. The photocurrent and its voltage dependence are determined by the time of exposure to the oxygen plasma. In the UV range, the sensitivity of the structures increases with decreasing radiation wavelength, starting at λ ≤ 230 nm. This is due to absorption in the Ga2O3 film. Reduction in the structure sensitivity with an increase in the time of exposure to oxygen plasma can be caused by the incorporation of defects both at the Ga2O3-GaAs interface and in the Ga2O3 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Droopad, M. Passlack, N. England, K. Rajagopalan, J. Abrokwah, and A. Kummel, Microelectron. Eng. 80, 138 (2005).

    Article  Google Scholar 

  2. O. Seok, W. Ahn, Y.-S. Kim, M.-W. Ha, and M.-K. Han, http://www.intechopen.com/books/semiconductortechnologies/gan-based-metal-oxide-semiconductor-devices

  3. S. K. Gupra, J. Sinh, and J. Akhtar, http://www.intechopen.com/books/physics-and-technologyof-silicon-carbide-devices/materials-and-processing-for-gatedielectrics-on-silicon-carbide-sic-surface

  4. S. Nakagomi, T. Moto, S. Takahashi, and Y. Kokubun, Appl. Phys. Lett. 103, 072105 (2013).

    Article  ADS  Google Scholar 

  5. T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, Appl. Phys. Express 1, 011202 (2008).

    Article  ADS  Google Scholar 

  6. R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, and S. Ohira, Appl. Phys. Lett. 94, 222102 (2009).

    Article  ADS  Google Scholar 

  7. Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, Appl. Phys. Lett. 90, 031912 (2007).

    Article  ADS  Google Scholar 

  8. F. K. Shan, G. X. Liu, G. H. Lee, I. S. Kim, and B. C. Shin, J. Appl. Phys. 98, 023504 (2005).

    Article  ADS  Google Scholar 

  9. Y. Zhang, J. Yan, Q. Li, C. Qu, L. Zhang, and T. Li, Physica B 406, 3079 (2011).

    Article  ADS  Google Scholar 

  10. L. Kong, J. Ma, C. Luan, W. Mi, and Y. Lv, Thin Solid Films 520, 4270 (2012).

    Article  Google Scholar 

  11. S.-A. Lee, J.-Y. Hwang, J.-P. Kim, S.-Y. Jeon, and C.-R. Cho, Appl. Phys. Lett. 89, 182906 (2006).

    Article  ADS  Google Scholar 

  12. V. M. Kalygina, A. N. Zarubin, E. P. Naiden, V. A. Novikov, Yu. S. Petrova, O. P. Tolbanov, A. V. Tyazhev, and T. M. Yaskevich, Semiconductors 46, 267 (2012).

    Article  ADS  Google Scholar 

  13. V. M. Kalygina, A. N. Zarubin, V. A. Novikov, Yu. S. Petrova, O. P. Tolbanov, A. V. Tyazhev, S. Yu. Tsupii, and T. M. Yaskevich, Semiconductors 47, 612 (2013).

    Article  ADS  Google Scholar 

  14. T. M. Yaskevich, D. L. Budnitskii, V. M. Kalygina, N. I. Kozhinova, I. A. Prudaev, and I. M. Egorova, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz. 56(8/3), 153 (2013).

    Google Scholar 

  15. Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, Appl. Phys. Lett. 90, 031912 (2007).

    Article  ADS  Google Scholar 

  16. S.-T. Su, W. Y. Weng, C. J. Chiu, and S. J. Chang, National Cheng Kung University. http://ir.lib.ncku.edu.tw/retrieve/104641/Effect+of+Thermal+Annealing+on+Ga2O3-Based+Solar-Blind+Photodetectors+Prepared+by+RF+Sputter-Abstract.pdf

  17. V. M. Kalygina, A. N. Zarubin, E. P. Naiden, V. A. Novikov, Yu. S. Petrova, M. S. Skakunov, O. P. Tolbanov, A. V. Tyazhev, and T. M. Yaskevich, Semiconductors 45, 1097 (2011).

    Article  ADS  Google Scholar 

  18. V. M. Kalygina, K. I. Valiev, A. N. Zarubin, Yu. S. Petrova, O. P. Tolbanov, A. V. Tyazhev, and T. M. Yaskevich, Semiconductors 46, 1003 (2012).

    Article  ADS  Google Scholar 

  19. J. Hao and M. Cocivera, J. Appl. Phys. D: Appl. Phys. 35, 433 (2002).

    Article  ADS  Google Scholar 

  20. V. M. Kalygina, V. V. Vishnikina, A. N. Zarubin, Yu. S. Petrova, M. S. Skakunov, O. P. Tolbanov, A. V. Tyazhev, and T. M. Yaskevich, Russ. Phys. J. 56, 984 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kalygina.

Additional information

Original Russian Text © V.M. Kalygina, V.V. Vishnikina, Yu.S. Petrova, I.A. Prudaev, T.M. Yaskevich, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 3, pp. 357–363.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalygina, V.M., Vishnikina, V.V., Petrova, Y.S. et al. Photoelectric characteristics of metal-Ga2O3-GaAs structures. Semiconductors 49, 345–351 (2015). https://doi.org/10.1134/S1063782615030100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615030100

Keywords

Navigation