Log in

Implosion dynamics of a megampere wire-array Z-pinch with an inner low-density foam shell at the Angara-5-1 facility

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode− anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formation of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Smirnov, Plasma Phys. Controlled Fusion 33, 1697 (1991).

    Article  ADS  Google Scholar 

  2. R. E. Olson, G. A. Chandler, M. S. Derzon, D. E. Hebron, J. S. Lash, R. J. Leeper, T. J. Nash, G. E. Rochau, T. W. L. Sanford, N. B. Alexander, and C. R. Gibson, Fusion Technol. 35, 260 (1999).

    Google Scholar 

  3. G. S. Volkov, E. V. Grabovski, K. N. Mitrofanov, and G. M. Oleinik, Plasma Phys. Rep. 30, 99 (2004).

    Article  ADS  Google Scholar 

  4. Z. A. Al’bikov, E. P. Velikhov, A. I. Veretennikov, V. A. Glukhikh, E. V. Grabovski, V. M. Gryaznov, O. A. Gusev, G. N. Zhemchuzhnikov, V. I. Zaitsev, O. A. Zolotovskii, Yu. A. Istomin, O. V. Kozlov, I. S. Krasheninnikov, S. S. Kurochkin, G. M. Latmanizova, et al., At. Energ. 68 (1), 26 (1990).

    Google Scholar 

  5. V. I. Derbilov, S. F. Medovshchikov, S. L. Nedoseev, E. G. Utyugov, A. K. Roslik, V. N. Strekalovskii, and V. T. Timoshin, Preprint No. IAE-5157/7 (Kurchatov Inst., Moscow, 1990).

    Google Scholar 

  6. G. M. Oleinik, Instrum. Exp. Tech. 43, 328 (2000).

    Article  Google Scholar 

  7. G. S. Volkov, E. V. Grabovskii, V. I. Zaitsev, G. G. Zukakishvili, M. V. Zurin, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, V. P. Smirnov, and I. N. Frolov, Instrum. Exp. Tech. 47, 201 (2004).

    Article  Google Scholar 

  8. A. V. Branitskii and G. M. Oleinik, Instrum. Exp. Tech. 43, 486 (2000).

    Article  Google Scholar 

  9. O. G. Ol’khovskaya, V. A. Gasilov, M. M. Basko, P. V. Sasorov, V. G. Novikov, I. Yu. Vichev, and I. I. Galiguzova, Mat. Model. 28 (1), 3 (2016).

    Google Scholar 

  10. V. V. Aleksandrov, E. V. Grabovski, A. N. Gribov, A. N. Gritsuk, S. F. Medovshchikov, G. M. Oleinik, and P. V. Sasorov, Plasma Phys. Rep. 34, 278 (2008).

    Article  ADS  Google Scholar 

  11. R. B. Baksht, I. M. Datsko, V. V. Loskutov, and A. V. Fedyunin, in High-Current Emissive Electronics, Ed. by G. A. Mesyats (Nauka, Novosibirsk, 1984), p. 93 [in Russian].

  12. V. V. Aleksandrov, G. S. Volkov, E. V. Grabovski, A. N. Gritsuk, Ya. N. Laukhin, K. N. Mitrofanov, G. M. Oleinik, I. N. Frolov, and A. P. Shevel’ko, in XLI International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2014, Book of Abstracts, p. 146.

    Google Scholar 

  13. V. V. Aleksandrov, G. S. Volkov, E. V. Grabovski, A. N. Gritsuk, N. I. Lakhtyushko, K. N. Mitrofanov, and S. F. Medovshchikov, Plasma Phys. Rep. 40, 135 (2014).

    Article  ADS  Google Scholar 

  14. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Volkov.

Additional information

Original Russian Text © V.V. Aleksandrov, E.A. Bolkhovitinov, G.S. Volkov, E.V. Grabovski, A.N. Gritsuk, S.F. Medovshchikov, G.M. Oleinik, A.A. Rupasov, I.N. Frolov, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 12, pp. 1046–1056.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, V.V., Bolkhovitinov, E.A., Volkov, G.S. et al. Implosion dynamics of a megampere wire-array Z-pinch with an inner low-density foam shell at the Angara-5-1 facility. Plasma Phys. Rep. 42, 1091–1100 (2016). https://doi.org/10.1134/S1063780X16120011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16120011

Navigation