Log in

Impact of Deuterium Plasma Flux on Fusion Reactor Materials: Radiation Damage, Surface Modification, Erosion

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Results of the complex experimental research of plasma impact on fusion reactor materials are presented. The near-wall plasma of a tokamak reactor is simulated on the linear plasma device LENTA (National Research Center Kurchatov Institute). Plasma fluence of 1022–1023 cm–2 to the material surface is provided at 1012–1013 cm–3 of plasma density in steady-state operation of the device, thus simulating the continuous regime of the fusion reactor plasma-wall conditions. The neutron effect on the first wall material (radiation damage) is also simulated by irradiation with high-energy ions accelerated by a cyclotron to MeV-range energies. The work is centered mainly on tungsten being a candidate for coating of the divertor region in the tokamak reactor. Samples irradiated at doses of 1021–1023 ion/cm2 to a high damage level from 0.1 to 80–100 displacements per atom characteristic of a durable operation of the reactor have been obtained on the cyclotron at the National Research Center Kurchatov Institute. Helium, carbon, and nitrogen ions and protons whose defect generation mechanisms are very different have been used in irradiations. Erosion data (erosion rate, erosion yield), swelling characteristics (profilometry), and microstructure changes (SEM) of the damaged surface layer are given for tungsten preirradiated with fast nitrogen ions. Proton-irradiated silicon carbide SiC has also been studied in deuterium plasma, and changes in its microstructure are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. W. R. Wampler and R. P. Doerner, Nucl. Fusion 49, 115023 (2009).

    Article  ADS  Google Scholar 

  2. J. Roth and K. Schmid, Phys. Scr. 145, 014031 (2011).

    Article  Google Scholar 

  3. Y. Hatano, M. Shimada, V. Kh. Alimov, et al., J. Nucl. Mater. 438, 114 (2013).

    Article  Google Scholar 

  4. Y. Hatano, T. Toyama, H. T. Lee, et al., At. Plasma-Mater. Interact. Data Fusion 18, 55 (2019).

    Google Scholar 

  5. S. P. Deshpande and P. M. Raole, et al., At. Plasma-Mater. Interact. Data Fusion 18, 3 (2019).

    Google Scholar 

  6. M. Mayer, E. Markina, S. Lindig, and T. Scwartz-Selinger, Phys. Scr. 159, 014045 (2011).

    Google Scholar 

  7. M. Shimada et al., Nucl. Fusion 55, 013008 (2015).

    Article  ADS  Google Scholar 

  8. Yu. M. Gasparyan, O. V. Ogorodnikova, A. A. Pisarev, et al., J. Nucl. Mater. 463, 1013 (2015).

    Article  ADS  Google Scholar 

  9. M. Shimada et al., J. Nucl. Mater. 463, 1005 (2015).

    Article  ADS  Google Scholar 

  10. X. Li, Y. Xu, Y. Zhang, and S. Liu, At. Plasma-Mater. Interact. Data Fusion 18, 81 (2019).

    Google Scholar 

  11. I. Kh. Alimov, et al., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 40 (4), 25 (2017).

    Google Scholar 

  12. V. S. Koidan et al., in Proceedings of the IAEA 25th FEC Fusion Energy Conference, St. Petersburg, 2014, paper MPT/P7-37.

  13. B. I. Khripunov, V. S. Koidan, A. I. Ryazanov, V. M. Gureev, S. N. Kornienko, S. T. Latushkin, A.  M.  Muksunov, E. V. Semenov, V. G. Stolyarova, and V. N. Unezhev, Phys. At. Nucl. 81, 1015 (2018).

    Article  Google Scholar 

  14. B. Khripunov et al., J. Nucl. Mater. 415, 649 (2011).

    Article  Google Scholar 

  15. B. Khripunov, V. Gureev, V. Koidan, et al., Phys. Scr. 145, 014052 (2011).

    Article  Google Scholar 

  16. A. Ryazanov, V. Koidan, B. Kripunov, et al., Fusion Sci. Technol. 61, 107 (2012).

    Article  Google Scholar 

  17. B. Khripunov, V. Gureev, V. Koidan, et al., J. Nucl. Mater. 438, 1014 (2013).

    Article  Google Scholar 

  18. B. Khripunov et al., J. Nucl. Mater. 463, 258 (2015).

    Article  ADS  Google Scholar 

  19. B. I. Khipunov, V. S. Koidan, and A. I. Ryazanov, At. Plasma-Mater. Interact. Data Fusion 18, 69 (2019).

    Google Scholar 

  20. F. Maury et al., Rad. Eff. 38, 53 (1978).

    Article  Google Scholar 

  21. D. R. Mason, X. Yi, M. A. Kirk, and S. L. Dudarev, J. Phys.: Condens. Matter 26, 376701 (2014).

    Google Scholar 

  22. N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, et al., Energy Dependence of the Yields of Ion-Induced Sputtering of Monoatomic Solids (Inst. Plasma Phys., Nagoya Univ., Nagoya, Japan, 1983).

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 19-08-00994-а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Khripunov.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khripunov, B.I., Koidan, V.S., Ryazanov, A.I. et al. Impact of Deuterium Plasma Flux on Fusion Reactor Materials: Radiation Damage, Surface Modification, Erosion. Phys. Atom. Nuclei 84, 1252–1258 (2021). https://doi.org/10.1134/S1063778821070048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821070048

Keywords:

Navigation