Log in

Microscopic Spin–Orbit Potential for Proton + \({}^{9}\)Be Scattering

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The elastic scattering differential cross-section (\(d\sigma/d\Omega\)) and the vector analyzing power (\(A_{y}\)) are reanalyzed simultaneously for the \(p+^{9}\)Be system. This analysis was performed using microscopic optical model potential (OMP) based on the Jeukenne, Lejeune, and Mahaux (JLM) effective nucleon-nucleon (\(NN\)) interaction for the central parts. For the spin–orbit (\(SO\)) part, the Scheerbaum potential was used. For comparison, the Woods–Saxon (WS) phenomenological OMP is used for the central real and central imaginary parts, and Thomas form for \(SO\)-potential. The present calculations showed that the phenomenological potential reproduces the elastic scattering data for all the considered energies. The JLM microscopic potential gives satisfactory reproduction for all the considered data. Moreover, JLM-based microscopic potential successfully reproduces the \(d\sigma/d\Omega\) and \(A_{y}\) at energies above 6 MeV on equal footing with the phenomenological one. The potential parameters for phenomenological and microscopic OMPs show a systematic energy behavior above 6 MeV. Additionally, the renormalized data have a noticeable effect on the OMP parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. G. D. Alkhazov, S. L. Belostotsky, and A. A. Vorobyov, Phys. Rep. 42, 89 (1978).

    Article  ADS  Google Scholar 

  2. Yu. A. Berezhnoy and V. P. Mikhailyuk, Phys. At. Nucl. 67, 1448 (2004).

    Article  Google Scholar 

  3. D. J. Baugh, J. A. R. Griffith, and S. Roman, Nucl. Phys. 83, 481 (1966).

    Article  Google Scholar 

  4. Yong-Li Xu, Yin-Lu Han, Hai-Ying Liang, Zhen-Dong Wu, Hai-Rui Guo, and Chong-Hai Cai, Chin. Phys. C 43, 094102 (2019).

    Article  ADS  Google Scholar 

  5. T. A. D. Brown, P. Papka, B. R. Fulton, D. L. Watson, S. P. Fox, D. Groombridge, M. Freer, N. M. Clarke, N. I. Ashwood, N. Curtis, V. Ziman, P. McEwan, S. Ahmed, W. N. Catford, D. Mahboub, C. N. Timis, et al., Phys. Rev. C 76, 054605 (2007).

    Article  ADS  Google Scholar 

  6. P. Papka, T. A. D. Brown, B. R. Fulton, D. L. Watson, S. P. Fox, D. Groombridge, M. Freer, N. M. Clarke, N. I. Ashwood, N. Curtis, V. Ziman, P. McEwan, S. Ahmed, W. N. Catford, D. Mahboub, C. N. Timis, et al., Phys. Rev. C 75, 045803 (2007).

    Article  ADS  Google Scholar 

  7. O. Bayakhmetov, Zh. Seksembayev, A. Azamatov, V. Kukulin, A. Pukhov, and S. Sakhiyev, Phys. Scr. 94, 085301 (2019).

    Article  ADS  Google Scholar 

  8. A. M. Kabyshev, K. A. Kuterbekov, A. K. Azhibekov, K. Zh. Bekmyrza, A. M. Mukhambetzhan, M. K. Kenzhebek, Ye. K. Sovetkhanov, and Zh. A. Yeltay, Euras. J. Phys. Funct. Mater. 3, 319 (2019).

    Google Scholar 

  9. F. W. Bingham, M. K. Brussel, and J. D. Steben, Nucl. Phys. 55, 265 (1964).

    Article  Google Scholar 

  10. N. Keeley, A. Pakou, V. Soukeras, F. Cappuzzello, L. Acosta, C. Agodi, A. Boiano, S. Calabrese, D. Carbone, M. Cavallaro, N. Deshmukh, A. Foti, A. Hacisalihoglu, M. La Commara, I. Martel, M. Mazzocco, et al., Phys. Rev. C 99, 014615 (2019).

    Article  ADS  Google Scholar 

  11. M. Y. H. Farag, E. H. Esmael, and H. M. Maridi, Phys. Rev. C 90, 034615 (2014).

    Article  ADS  Google Scholar 

  12. A. Pakou et al., Acta Phys. Pol. B 50, 1547 (2019).

    Article  ADS  Google Scholar 

  13. M. F. Werby, S. Edwards, and W. J. Thompson, Nucl. Phys. A 169, 81 (1971).

    Article  ADS  Google Scholar 

  14. E. Bauge, J. P. Delaroche, and M. Girod, Phys. Rev. C 58, 1118 (1998).

    Article  ADS  Google Scholar 

  15. J.-P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 16, 80 (1977).

    Article  ADS  Google Scholar 

  16. N. Alamanos and P. Roussel-Chomaz, Ann. Phys. (France) 21, 601 (1996).

    ADS  Google Scholar 

  17. K. O. Behairy, Zakaria M. M. Mahmoud, and M. El-Azab Farid, Phys. At. Nucl. 77, 869 (2014).

    Article  Google Scholar 

  18. Zakaria M. M. Mahmoud and Mahmoud A. Hassanien, Phys. At. Nucl. 82, 599 (2019).

    Article  Google Scholar 

  19. Zakaria M. M. Mahmoud, A. Hemmdan, and Kassem O. Behairy, Res. Phys. 16, 102892 (2020).

    Google Scholar 

  20. R. R. Scheerbaum, Nucl. Phys. A 257, 77 (1976).

    Article  ADS  Google Scholar 

  21. T. Uesaka, S. Sakaguchi, Y. Iseri, K. Amos, N. Aoi, Y. Hashimoto, E. Hiyama, M. Ichikawa, Y. Ichikawa, S. Ishikawa, K. Itoh, M. Itoh, H. Iwasaki, S. Karataglidis, T. Kawabata, et al., Phys. Rev. C 82, 021602 (2010).

    Article  ADS  Google Scholar 

  22. A. J. Sierk and T. A. Tombrello, Nucl. Phys. A 210, 341 (1973).

    Article  ADS  Google Scholar 

  23. J. Cook, Comput. Phys. Commun. 31, 363 (1984).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the General Research Project under the grant no. G.R.P-57-42.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zakaria M. M. Mahmoud or Omnia S. A. Qandil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, Z.M., Qandil, O.S. Microscopic Spin–Orbit Potential for Proton + \({}^{9}\)Be Scattering. Phys. Atom. Nuclei 84, 711–723 (2021). https://doi.org/10.1134/S1063778821050100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821050100

Navigation