Log in

Results of Microscopic Self-Consistent Theory of Quasiparticle—Phonon Interaction in Nuclei

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A self-consistent approach in the problem of taking into account quasiparticle-phonon interaction provides a high predictive power and is free from adjustable parameters (this is of crucial importance for astrophysics). Moreover, it is consistent and makes it possible to take into account new effects. A brief survey of the results obtained within this approach on the basis of Skyrme or Fayans functionals by employing the smallness parameter g2, where g is the phonon-production amplitudes, with allowance for tadpole effects is presented. The contribution of quasiparticle-phonon interaction to ground-state electromagnetic moments of odd nuclei; second-order anharmonic effects in g2, including quadrupole moments of the first 2+ and 3 states and EL transitions between one-phonon states; third-order anharmonic effects; pygmy dipole and giant resonances; and the contribution of quasiparticle-phonon interaction to radiative properties of nuclear reactions are considered. For magic and semimagic nuclei, additional effects and structures arising in nuclear features because of quasiparticle-phonon interaction are discussed along with new—that is, three- and four-quasiparticle ground-state—correlations. Earlier unknown values of the above features, including the features of the pygmy dipole resonance in neutron-rich nickel isotopes, are predicted. It is shown that, in all of the aforementioned problems, the contributions of quasiparticle-phonon interaction is sizable, is of fundamental importance, and is necessary for explaining experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Bohr and B. Mottelson, Nuclear Structure, Vol. 2: Nuclear Deformations,(Benjamin, New York, 1975).

    MATH  Google Scholar 

  2. V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticle and Phonons (Inst. Phys. Publ., Bristol, Philadelphia, 1992; Energoatomizdat, Moscow, 1989).

    Google Scholar 

  3. N. Paar, D. Vretenar, E. Khan, and G. Colo, Rep. Prog. Phys. 70, 691 (2007).

    Article  ADS  Google Scholar 

  4. D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).

    Article  ADS  Google Scholar 

  5. S. Goriely and E. Khan, Nucl. Phys. A 706, 217 (2002).

    Article  ADS  Google Scholar 

  6. V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).

    Article  ADS  Google Scholar 

  7. A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Sov. J. Nucl. Phys. 48, 995 (1988).

    Google Scholar 

  8. S. V. Tolokonnikov and E. E. Saperstein, Phys. At. Nucl. 73, 1684 (2010).

    Article  Google Scholar 

  9. P. Klüpfel, P.-G. Reinhard, T. J. Bürvenich, and J. A. Maruhn, Phys. Rev. C 79, 034310 (2009).

    Article  ADS  Google Scholar 

  10. P. Ring and J. Speth, Nucl. Phys. A 235, 315 (1974).

    Article  ADS  Google Scholar 

  11. V. A. Khodel’, Sov. J. Nucl. Phys. 24, 367 (1976).

    Google Scholar 

  12. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1965; Intersci., New York, 1967).

    Google Scholar 

  13. S. P. Kamerdzhiev, Sov. J. Nucl. Phys. 38, 188 (1983).

    Google Scholar 

  14. V. I. Tselyaev, Sov. J. Nucl. Phys. 50, 780 (1989).

    Google Scholar 

  15. S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys. Rep. 393, 1 (2004).

    Article  ADS  Google Scholar 

  16. V. Tselyaev, Phys. Rev. C 75, 024306 (2007).

    Article  ADS  Google Scholar 

  17. Nguyen Van Giai, Ch. Stoyanov, and V. V. Voronov, Phys. Rev. C 57, 1204 (1998).

    Article  ADS  Google Scholar 

  18. S. P. Kamerdzhiev, A. V. Avdeenkov, and D. A. Voitenkov, Phys. At. Nucl. 74, 1478 (2011).

    Article  Google Scholar 

  19. S. V. Tolokonnikov, S. Kamerdzhiev, D. Voytenkov, S. Krewald, and E. E. Saperstein, Phys. Rev. C 84, 064324 (2011).

    Article  ADS  Google Scholar 

  20. A. Avdeenkov, S. Goriely, S. Kamerdzhiev, and S. Krewald, Phys. Rev. C 83, 064316 (2011).

    Article  ADS  Google Scholar 

  21. https://www.nndc.bnl.gov/ensdf/.

  22. H. Grawe, K. Langanke, and G. Martinez-Pinedo, Rep. Prog. Phys. 70, 1525 (2007).

    Article  ADS  Google Scholar 

  23. K. Kitao, M. Kanbe, and K. Ogawa, Nucl. Data Sheets 67, 327 (1992).

    Article  ADS  Google Scholar 

  24. T. Tamura, H. Iimura, K. Miyano, and S. Ohya, Nucl. Data Sheets 64, 323 (1991).

    Article  ADS  Google Scholar 

  25. H. Wapstra and G. Audi, Nucl. Phys. A 432, 55 (1985).

    Article  ADS  Google Scholar 

  26. A. Avdeenkov and S. P. Kamerdzhiev, in 50 Years of Nuclear BCS, Ed. by R. Broglia and V. Zelevinsky (World Scientific, Singapore, 2012), Chap. 20, p. 274.

  27. S. Kamerdzhiev and E. E. Saperstein, Eur. Phys. J. A 37, 333 (2008).

    Article  ADS  Google Scholar 

  28. A. V. Avdeenkov and S. P. Kamerdzhiev, Phys. At. Nucl. 62, 563 (1999).

    Google Scholar 

  29. M. Baldo, U. Lombardo, E. E. Saperstein, and M. V. Zverev, Phys. Rep. 391, 261 (2004).

    Article  ADS  Google Scholar 

  30. E. E. Saperstein and S. V. Tolokonnikov, Phys. At. Nucl. 79, 1030(2016).

    Article  Google Scholar 

  31. E. E. Saperstein, M. Baldo, S. S. Pankratov, and S. V. Tolokonnikov, JETP Lett. 104, 609 (2016).

    Article  ADS  Google Scholar 

  32. N. V. Gnezdilov, E. E. Saperstein, and S. V. Tolokonnikov, Phys. At. Nucl. 78, 24 (2015).

    Article  Google Scholar 

  33. N. V. Gnezdilov, E. E. Saperstein, and S. V. Tolokonnikov, Eur. Phys. Lett. 107, 62001 (2014).

    Article  ADS  Google Scholar 

  34. N. V. Gnezdilov, I. N. Borzov, E. E. Saperstein, and S. V. Tolokonnikov, Phys. Rev. C 89, 034304 (2014).

    Article  ADS  Google Scholar 

  35. E. E. Saperstein, N. V. Gnezdilov, and S. V. Tolokonnikov, AIP Conf. Proc. 1619, 145 (2014).

    Article  ADS  Google Scholar 

  36. E. Litvinova, Phys. Rev. C 85, 021303(R) (2012).

    Article  ADS  Google Scholar 

  37. N. J. Stone, Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments (IAEA, 2014).

  38. S. P. Kamerdzhiev, O. I. Achakovskiy, D. A. Voitenkov, and S. V. Tolokonnikov, Phys. At. Nucl. 77, 66 (2014).

    Article  Google Scholar 

  39. E. E. Saperstein, O. I. Achakovskiy, S. P. Kamerdzhiev, S. Krewald, J. Speth, and S. V. Tolokonnikov, Phys. At. Nucl. 77, 1033 (2014).

    Article  Google Scholar 

  40. E. E. Saperstein, S. Kamerdzhiev, D. S. Krepish, S. V. Tolokonnikov, and D. Voitenkov, J. Phys. G 44, 065104 (2017).

  41. E. E. Saperstein, S. Kamerdzhiev, D. S. Krepish, S. V. Tolokonnikov, and D. Voitenkov, in Proceedings of Conference ICNFP-2017, ar**v: 1712.00982.

  42. S. V. Tolokonnikov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein, and D. Voitenkov, Eur. Phys. J. A 48, 70 (2012).

    Article  ADS  Google Scholar 

  43. E. E. Saperstein and S. V. Tolokonnikov, AIP Conf. Proc. 1912, 020016 (2017).

    Article  Google Scholar 

  44. V. Yu. Ponomarev, Ch. Stoyanov, N. Tsoneva, and M. Grinberg, Nucl. Phys. A 635, 470 (1998).

    Article  ADS  Google Scholar 

  45. D. Voitenkov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein and S. V. Tolokonnikov, Phys. Rev. C 85, 054319 (2012).

    Article  ADS  Google Scholar 

  46. R. A. Broglia, R. Liotta, and V. Paar, Phys. Lett. B 38, 480 (1972).

    Article  ADS  Google Scholar 

  47. A. P. Platonov, Sov. J. Nucl. Phys. 36, 492 (1982).

    Google Scholar 

  48. E. E. Saperstein, S. P. Kamerdzhiev, S. Krewald, J. Speth, and S. V. Tolokonnikov, JETP Lett. 98, 631 (2013).

    Google Scholar 

  49. S. P. Kamerdzhiev and D. A. Voitenkov, Phys. At. Nucl. 79, 904 (2016).

    Article  Google Scholar 

  50. S. P. Kamerdzhiev, D. A. Voitenkov, E. E. Sapershtein, S. V. Tolokonnikov, and M. I. Shitov, JETP Lett. 106, 139 (2017).

    Article  ADS  Google Scholar 

  51. H. K. Toft, A. C. Larsen, A. Bürger, M. Guttormsen, A. Görgen, H. T. Nyhus, T. Renstrøm, S. Siem, G. M. Tveten, and A. Voinov, Phys. Rev. C 83, 044320 (2011).

    Article  ADS  Google Scholar 

  52. T. Renstrøm, G. M. Tveten, J. E. Midtbø, H. Utsunomiya, O. Achakovskiy, S. Kamerdzhiev, B. Alex Brown, A. Avdeenkov, T. Ari-izumi, A. Görgen, S. M. Grimes, M. Guttormsen, T. W. Hagen, V. W. Ingeberg, S. Katayama, B. V. Kheswa, et al., ar**v: 1804.08086v1.

  53. A. C. Larsen, J. E. Midtbø, M. Guttormsen, T. Renstrøm, S. N. Liddick, A. Spyrou, S. Karampagia, B. A. Brown, O. Achakovskiy, S. Kamerdzhiev, D. L. Bleuel, A. Couture, L. Crespo Campo, B. P. Crider, A. C. Dombos, R. Lewis, et al., Phys. Rev. C 97, 054329 (2018).

    Article  ADS  Google Scholar 

  54. S. N. Liddick, A. Spyrou, B. P. Crider, F. Naqvi, A. C. Larsen, M. Guttormsen, M. Mumpower, R. Surman, G. Perdikakis, D. L. Bleuel, A. Couture, L. Crespo Campo, A. C. Dombos, R. Lewis, S. Mosby, et al., Phys. Rev. Lett. 116, 242502 (2016).

    Article  ADS  Google Scholar 

  55. M. Guttormsen, R. Chankova, U. Agvaanluvsan, E. Algin, L. A. Bernstein, F. Ingebretsen, T. Liönnroth, S. Messelt, G. E. Mitchell, J. Rekstad, A. Schiller, S. Siem, A. C. Sunde, A. Voinov, and S. Ødegård, Phys. Rev. C 71, 044307 (2005).

    Article  ADS  Google Scholar 

  56. E. Litvinova, P. Ring, and V. I. Tselyaev, Phys. Rev. C 88, 044320 (2013).

    Article  ADS  Google Scholar 

  57. R. Schwengner, S. Frauendorf, and A. C. Larsen, Phys. Rev. Lett. 111, 232504 (2013).

    Article  ADS  Google Scholar 

  58. O. Wieland, A. Bracco, F. Camera, G. Benzoni, N. Blasi, S. Brambilla, F. C. L. Crespi, S. Leoni, B. Million, R. Nicolini, A. Maj, P. Bednarczyk, J. Grebosz, M. Kmiecik, W. Meczynski, and J. Styczen, Phys. Rev. Lett. 102, 092502 (2009).

    Article  ADS  Google Scholar 

  59. E. Litvinova, P. Ring, and V. I. Tselyaev, Phys. Rev. Lett. 105, 022502 (2010).

    Article  ADS  Google Scholar 

  60. S. P. Kamerdzhiev, A. V. Avdeenkov, and O. I. Achakovskiy, in Proceedings of the All-Russia Seminar on Giant Dipole Resonance. Results and Prospects, Moscow, Feb. 6, 2014 (2014), p. 33.

  61. S. P. Kamerdzhiev, A. V. Avdeenkov, and O. I. Achakovskiy, Phys. At. Nucl. 77, 1303 (2014).

    Article  Google Scholar 

  62. O. Achakovskiy, A. Avdeenkov, S. Goriely, S. Kamerdzhiev, S. Krewald, and D. Voitenkov, EPJ Web Conf. 93, 01034 (2015).

    Article  Google Scholar 

  63. O. I. Achakovskiy, A. V. Avdeenkov, S. P. Kamerdzhiev, and D. A. Voitenkov, in Proceedings of the 22nd International Seminar on Interaction of Neutrons with Nuclei, ISINN-22 (Dubna, 2014), p. 207.

  64. O. I. Achakovskiy, A. V. Avdeenkov, and S. P. Kamerdzhiev, in Proceedings of the 22nd International Seminar on Interaction of Neutrons with Nuclei, ISINN-22 (Dubna, 2014), p. 213.

  65. O. Achakovskiy, A. Avdeenkov, S. Goriely, S. Kamerdzhiev, and S. Krewald, Phys. Rev. C 91, 034620 (2015).

    Article  ADS  Google Scholar 

  66. O. I. Achakovskiy, S. P. Kamerdzhiev, and V. I. Tselyaev, JETP Lett. 104, 374 (2016).

    Article  ADS  Google Scholar 

  67. K. Wisshak, F. Voss, Ch. Theis, F. Käippeler, K. Guber, L. Kazakov, N. Kornilov, and G. Reffo, Phys. Rev. C 54, 1451 (1996).

    Article  ADS  Google Scholar 

  68. V. M. Timokhov, M. V. Bokhovko, M. V. Isakov, L. E. Kazakov, V. N. Kononov, G. N. Manturov, E. D. Poletaev, and V. G. Pronyaev, IPPE Report No. 1921 (A. I. Leypunsky Inst. Phys. Power Eng., Obninsk, 1988).

  69. M. Herman, R. Capote, B. V. Carlson, P. Obložinský, M. Sin, A. Trkov, H. Wienke, and V. Zerkin, Nucl. Data Sheets 108, 2655 (2007).

    Article  ADS  Google Scholar 

  70. R. Capote, M. Herman, P. Obložinský, P. G. Young, S. Goriely, T. Belgya, A. V. Ignatyuk, A. J. Koning, S. Hilaire, V. A. Plujko, M. Avrigeanu, O. Bersillon, M. B. Chadwick, T. Fukahori, Zhigang Ge, Yinlu Han, et al., Nucl. Data Sheets 110, 3107 (2009).

    Article  ADS  Google Scholar 

  71. T. Belgya, O. Bersillon, R. Capote, T. Fukahori, Ge Zhigang, S. Goriely, M. Herman, A. V. Ignatyuk, S. Kailas, A. J. Koning, P. Obložinský, V. Plujko, and P. G. Young, IAEA-TECDOC-1506 (IAEA, Vienna, 2006).

    Google Scholar 

  72. S. Goriely, S. Hilaire, and A. J. Koning, Phys. Rev. C 78, 064307 (2008).

    Article  ADS  Google Scholar 

  73. S. Goriely, E. Khan, and V. Samyn, Nucl. Phys. A 739, 331 (2004).

    Article  ADS  Google Scholar 

  74. O. Achakovskiy, A. Avdeenkov, and S. Kamerdzhiev, EPJ Web Conf. 107, 05002 (2016).

    Article  Google Scholar 

  75. O. Achakovskiy, S. Kamerdzhiev, V. Tselyaev, and M. Shitov, EPJ Web Conf. 107, 05005 (2016).

    Article  Google Scholar 

  76. S. P. Kamerdzhiev, O. I. Achakovskiy, and A. V. Avdeenkov, JETP Lett. 101, 725 (2015).

    Article  ADS  Google Scholar 

  77. S. P. Kamerdzhiev, O. I. Achakovskiy, A. V. Avdeenkov, and S. Gorieli, Phys. At. Nucl. 79, 567 (2016).

    Article  Google Scholar 

  78. S. F. Mughabghab, Atlas of Neutron Resonances, Resonance Parameters, and Thermal Cross Sections Z = 1–100 (Elsevier, Amsterdam, 2006).

    Google Scholar 

  79. S. P. Kamerdzhiev and S. F. Kovalev, Phys. At. Nucl. 69, 418 (2006).

    Article  Google Scholar 

  80. O. Achakovskiy and S. Kamerdzhiev, EPJ Web of Conf. 146, 05003 (2017).

    Article  Google Scholar 

  81. I. Poltoratska, P. von Neumann-Cosel, A. Tamii, T. Adachi, C. A. Bertulani, J. Carter, M. Dozono, H. Fujita, K. Fujita, Y. Fujita, K. Hatanaka, M. Itoh, T. Kawabata, Y. Kalmykov, A. M. Krumbholz, E. Litvinova, et al., Phys. Rev. C 85, 041304(R) (2012).

    Article  ADS  Google Scholar 

  82. N. Lyutorovich, V. I. Tselyaev, J. Speth, S. Krewald, F. Grümmer, and P.-G. Reinhard, Phys. Rev. Lett. 109, 092502 (2012).

    Article  ADS  Google Scholar 

  83. V. Tselyaev, N. Lyutorovich, J. Speth, S. Krewald, and P.-G. Reinhard, Phys. Rev. C 94, 034306 (2016).

    Article  ADS  Google Scholar 

  84. N. U. H. Syed, M. Guttormsen, F. Ingebretsen, A. C. Larsen, T. Lönnroth, J. Rekstad, A. Schiller, S. Siem, and A. Voinov, Phys. Rev. C 79, 024316 (2009).

    Article  ADS  Google Scholar 

  85. N. Ryezayeva, T. Hartmann, Y. Kalmykov, H. Lenske, P. von Neumann-Cosel, V. Yu. Ponomarev, A. Richter, A. Shevchenko, S. Volz, and J. Wambach, Phys. Rev. Lett. 89, 272502 (2002).

    Article  ADS  Google Scholar 

  86. A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C. A. Bertulani, J. Carter, M. Dozono, H. Fujita, K. Fujita, K. Hatanaka, D. Ishikawa, M. Itoh, T. Kawabata, Y. Kalmykov, A. M. Krumbholz, et al., Phys. Rev. Lett. 107, 062502 (2011).

    Article  ADS  Google Scholar 

  87. M. N. Harakeh and A. E. L. Dieperink, Phys. Rev. C 23, 2329 (1981).

    Article  ADS  Google Scholar 

  88. T. D. Poelhekken, S. K. B. Hesmondhalgh, H. J. Hofmann, A. van der Woude, and M. N. Harakeh, Phys. Lett. B 278, 423 (1992).

    Article  ADS  Google Scholar 

  89. S. N. Belyaev, O. V. Vasil’ev, V. V. Voronov, A. A. Nechkin, V. Yu. Ponomarev, and V. A. Semenov, Phys. At. Nucl. 58, 1833 (1995).

    Google Scholar 

  90. N. A. Lyutorovich, V. I. Tselyaev, O. I. Achakovskiy, and S. P. Kamerdzhiev, JETP Lett. 107, 659 (2018).

    Article  ADS  Google Scholar 

  91. V. Tselyaev, N. Lyutorovich, J. Speth, and P.-G. Reinhard, Phys. Rev. C 96, 024312 (2017).

    Article  ADS  Google Scholar 

  92. P. Ring, E. Litvinova, and V. Tselyaev, AIP Conf. Proc. 1491, 214 (2012).

    Article  ADS  Google Scholar 

  93. N. Lyutorovich, V. Tselyaev, J. Speth, S. Krewald, and P.-G. Reinhard, Phys. At. Nucl. 79, 868 (2016).

    Article  Google Scholar 

  94. J. Speth and N. Lyutorovich, Int. J. Mod. Phys. E 26, 1740025 (2017).

    Article  ADS  Google Scholar 

  95. V. Tselyaev, N. Lyutorovich, J. Speth, and P.-G. Reinhard, Phys. Rev. C 97, 044308 (2018).

    Article  ADS  Google Scholar 

  96. V. I. Tselyaev, AIP Conf. Proc. 1606, 201 (2014).

    Article  ADS  Google Scholar 

  97. V. I. Tselyaev, Phys. Rev. C 88, 054301 (2013).

    Article  ADS  Google Scholar 

  98. E. Litvinova and V. I. Tselyaev, in Fifty Years of Nuclear BCS: Pairing in Finite Systems (World Scientific, Singapore, 2013), Chap. 10, p. 125.

    Book  Google Scholar 

  99. J. Speth, S. Krewald, F. Grümmer, P.-G. Reinhard, N. Lyutorovich, and V. Tselyaev, Nucl. Phys. A 928, 17 (2014).

    Article  ADS  Google Scholar 

  100. N. Lyutorovich, V. Tselyaev, J. Speth, S. Krewald, F. Grömmer, and P.-G. Reinhard, Phys. Lett. B 749, 292 (2015).

    Article  ADS  Google Scholar 

  101. S. P. Kamerdzhiev and V. N. Tkachev, Sov. J. Nucl. Phys. 36, 43 (1982).

    Google Scholar 

  102. E. E. Saperstein, S. Kamerdzhiev, S. Krewald, J. Speth, and S. V. Tolokonnikov, Eur. Phys. Lett. 103, 42001 (2013).

    Article  ADS  Google Scholar 

  103. E. E. Saperstein, M. Baldo, S. S. Pankratov, and S. V. Tolokonnikov, JETP Lett. 106, 555 (2017).

    Article  ADS  Google Scholar 

  104. E. E. Saperstein, M. Baldo, S. S. Pankratov, and S. V. Tolokonnikov, JETP Lett. 104, 743 (2016).

    Article  ADS  Google Scholar 

  105. E. E. Saperstein, M. Baldo, N. V. Gnezdilov, and S. V. Tolokonnikov, Phys. Rev. C 93, 034302 (2016).

    Article  ADS  Google Scholar 

  106. E. E. Saperstein, M. Baldo, N. V. Gnezdilov, and S. V. Tolokonnikov, JETP Lett. 103, 1 (2016).

    Article  ADS  Google Scholar 

  107. S. Kamerdzhiev, D. Voitenkov, E. E. Saperstein, and S. V. Tolokonnikov, JETP Lett. 108, 155 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Organizing Committee of the 68th International Conference “Nucleus-2018” for providing us with the possibility of presenting this article in the form of a report at a plenary meeting of this conference. Of course, the results obtained in the theoretical studies performed within the period spanning 2012 and 2018 and quoted in [26–107] (see the list of references in the present article) could not be described in sufficient detail either in that report or in the present article. We are grateful to the authors of those articles for their contribution to the aforementioned studies and for enlightening discussions.

Funding

This work was supported by Russian Science Foundation (grant no. 16-12-10155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kamerdzhiev.

Additional information

Russian Text © The Author(s), 2019, published in Yadernaya Fizika, 2019, Vol. 82, No. 4, pp. 320–338.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamerdzhiev, S.P., Achakovskiy, O.I., Tolokonnikov, S.V. et al. Results of Microscopic Self-Consistent Theory of Quasiparticle—Phonon Interaction in Nuclei. Phys. Atom. Nuclei 82, 366–384 (2019). https://doi.org/10.1134/S1063778819040100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819040100

Navigation