Log in

On microscopic theory of radiative nuclear reaction characteristics

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma rays is given. First of all, we discuss the impact of Phonon Coupling (PC) on the Photon Strength Function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the standard HFB + QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation is applied. It uses the HFB mean field and includes both the QRPA and PC effects on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even–even semi-magic Sn and Ni isotopes as well as for double-magic 132Sn and 208Pb using the reaction codes EMPIRE and TALYS with several Nuclear Level Density (NLD) models: (1) the neutron capture cross sections; (2) the corresponding neutron capture gamma spectra; (3) the average radiative widths of neutron resonances. In all the properties considered, the PC contribution turned out to be significant, as compared with the standard QRPA one, and necessary to explain the available experimental data. The results with the phenomenological so-called generalized superfluid NLD model turned out to be worse, on the whole, than those obtained with the microscopic HFB + combinatorial NLD model. The very topical question about the M1 resonance contribution to PSFs is also discussed.

Finally, we also discuss the modern microscopic NLD models based on the self-consistent HFB method and show their relevance to explain the experimental data as compared with the phenomenological models. The use of these self-consistent microscopic approaches is of particular relevance for nuclear astrophysics, but also for the study of double-magic nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Goriely, E. Khan, and M. Samyn, Nucl. Phys. A 739, 331 (2004).

    Article  ADS  Google Scholar 

  2. S. F. Mughabghab, Atlas of Neutron Resonances, Resonance Parameters and Thermal Cross Sections Z = 1–100 (Elsevier, Amsterdam, 2006).

    Google Scholar 

  3. T. Belgya, O. Bersillon, R. Capote, et al., Handbook for Calculations of Nuclear Reaction Data, RIPL-2, IAEA-TECDOC-1506 (IAEA, Vienna, 2006). http://www-nds.iaea.org/RIPL-2/

    Google Scholar 

  4. R. Capote, M. Herman, P. Oblozinsky, et al., Nuclear Data Sheets 110, 3107 (2009). https://wwwnds.iaea.org/RIPL-3

    Article  ADS  Google Scholar 

  5. D. M. Brink, Ph. D Thesis (Oxford Univ., Oxford, 1955).

    Google Scholar 

  6. O. Wieland, A. Bracco, F. Camera, et al., Phys. Rev. Lett. 102, 092502 (2009).

    Article  ADS  Google Scholar 

  7. D. Savran, T. Aumann, and A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013).

    Article  ADS  Google Scholar 

  8. S. P. Kamerdzhiev, A. V. Avdeenkov, and O. I. Achakovskiy, Phys. At. Nucl. 77, 1303 (2014).

    Article  Google Scholar 

  9. N. Paar, D. Vretenar, E. Khan, and G. Colò, Rep. Prog. Phys. 70, 691 (2007).

    Article  ADS  Google Scholar 

  10. H. K. Toft, A. C. Larsen, U. Agvaanluvsan, et al., Phys. Rev. C 81, 064311 (2010).

    Article  ADS  Google Scholar 

  11. H. K. Toft, A. C. Larsen, A. Bü rger, et al., Phys. Rev. C 83, 044320 (2011).

    Article  ADS  Google Scholar 

  12. R. Schwengner, R. Massarczyk, G. Rusev, et al., Phys. Rev. C 87, 024306 (2013).

    Article  ADS  Google Scholar 

  13. H. Utsunomiya, S. Goriely, M. Kamata, et al., Phys. Rev. C 84, 055805 (2011).

    Article  ADS  Google Scholar 

  14. M. Herman, R. Capote, B. V. Carlson, et al., Nucl. Data Sheets 108, 2655 (2007). http://www.nndc.bnl.gov/empire/index.html

    Article  ADS  Google Scholar 

  15. A. J. Koning and D. Rochman, Nucl. Data Sheets 113, 2841 (2012).

    Article  ADS  Google Scholar 

  16. S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys. Rep. 393, 1 (2004).

    Article  ADS  Google Scholar 

  17. A. Avdeenkov, S. Goriely, S. Kamerdzhiev, and S. Krewald, Phys. Rev. C 83, 064316 (2011).

    Article  ADS  Google Scholar 

  18. V. G. Soloviev, Ch. Stoyanov, and V. V. Voronov, Nucl. Phys. A 304, 503 (1978).

    Article  ADS  Google Scholar 

  19. T. S. Belanova, A. V. Ignatyuk, A. B. Pashchenko, and V. I. Plyaskin, Handbook on Radiative Neutron Capture (Moscow, Energatomizdat, 1986) [in Russian].

    Google Scholar 

  20. V. I. Tselyaev, Phys. Rev. C 75, 024306 (2007).

    Article  ADS  Google Scholar 

  21. E. Chabanat, P. Bonche, P. Haensel, et al., Nucl. Phys. A 635, 231 (1998).

    Article  ADS  Google Scholar 

  22. K. Bennaceur and J. Dobaczewski, Comp. Phys. Commun. 168, 96 (2005).

    Article  ADS  Google Scholar 

  23. V. V. Varlamov, N. N. Peskov, D. S. Rudenko, and M. E. Stepanov, Vopr. At. Nauki Tekh., Ser. Yad. Konst. 1, 2 (2003).

    Google Scholar 

  24. S. C. Fultz, B. L. Berman, J. T. Caldwell, et al., Phys. Rev. 186, 1255 (1969).

    Article  ADS  Google Scholar 

  25. A. Leprêtre, H. Beil, R. Bergère, et al., Nucl. Phys. A 219, 39 (1974).

    Article  ADS  Google Scholar 

  26. E. Litvinova, P. Ring, and V. Tselyaev, Phys. Rev. Lett. 105, 022502 (2010).

    Article  ADS  Google Scholar 

  27. P. Adrich, A. Klimkiewicz, M. Fallot, et al., Phys. Rev. Lett. 95, 132501 (2005).

    Article  ADS  Google Scholar 

  28. N. U. H. Syed, M. Guttormsen, F. Ingebretsen, et al., Phys. Rev. C 79, 024316 (2009).

    Article  ADS  Google Scholar 

  29. N. Lyutorovich, V. Tselyaev, J. Speth, et al., Phys. Lett. B 749, 292 (2015).

    Article  ADS  Google Scholar 

  30. N. Ryezayeva, T. Hartmann, Y. Kalmykov, et al., Phys. Rev. Lett. 89, 272502 (2002).

    Article  ADS  Google Scholar 

  31. A. J. Koning, S. Hilaire, and S. Goriely, Nucl. Phys. A 810, 13 (2008).

    Article  ADS  Google Scholar 

  32. S. Goriely, S. Hilaire, and A. J. Koning, Phys. Rev. C 78, 064307 (2008).

    Article  ADS  Google Scholar 

  33. S. Hilaire, M. Girod, S. Goriely, and A. J. Koning, Phys. Rev. C 86, 064317 (2012).

    Article  ADS  Google Scholar 

  34. V. M. Timokhov et al., IPPE Rep. No. 1921 (I. I. Leypunsky Inst. Phys. Power Eng., Obninsk, 1988).

    Google Scholar 

  35. K. Wisshak et al., Phys. Rev. C 54, 1451 (1996).

    Article  ADS  Google Scholar 

  36. R. L. Macklin, T. Inada, and J. H. Gibbons, Washington AEC Office Rep. No. 1041 (Washington, 1962), p. 30.

    Google Scholar 

  37. J. Nishiyama, M. Igashira, T. Ohsaki, et al., J. Nucl. Sci. Technol. (Tokyo) 45, 352 (2008).

    Article  Google Scholar 

  38. O. Achakovskiy, A. Avdeenkov, S. Goriely, et al., Phys. Rev. C 91, 034620 (2015).

    Article  ADS  Google Scholar 

  39. S. Goriely and E. Khan, Nucl. Phys. A 706, 217 (2002).

    Article  ADS  Google Scholar 

  40. R. C. Greenwood and C. W. Reich, Phys. Rev. C 4, 2249 (1971).

    Article  ADS  Google Scholar 

  41. O. A. Wasson, R. E. Chrien, and R. C. Greenwood, Rep. USNDC-7 P36.

  42. O. I. Achakovskiy, A. V. Avdeenkov, S. P. Kamerdzhiev, and D. A. Voitenkov, in Proceedings of the 22nd International Seminar on Interaction of Neutrons with Nuclei, ISINN-22, Dubna, May 27–30, 2014, p. 207.

    Google Scholar 

  43. S. P. Kamerdzhiev and S. F. Kovalev, Phys. At. Nucl. 69, 418 (2006).

    Article  Google Scholar 

  44. H. A. Bethe, Phys. Rev. 50, 332 (1936).

    Article  ADS  Google Scholar 

  45. A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965).

    Article  ADS  Google Scholar 

  46. J. R. Huizenga and L. G. Moretto, Ann. Rev. Nucl. Sci. 22, 427 (1972).

    Article  ADS  Google Scholar 

  47. A. V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975).

    Google Scholar 

  48. S. K. Kataria, V. S. Ramamurthy, and S. S. Kapoor, Phys. Rev. C 18, 549 (1978).

    Article  ADS  Google Scholar 

  49. S. Goriely, Nucl. Phys. A 605, 28 (1996).

    Article  ADS  Google Scholar 

  50. A. V. Ignatyuk, IAEA Report, TECDOC-1034 (IAEA, Vienna, 1998).

    Google Scholar 

  51. A. J. Koning, S. Hilaire, and S. Goriely, Nucl. Phys. A 810, 13 (2008).

    Article  ADS  Google Scholar 

  52. W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Nucl. Phys. A 217, 269 (1973).

    Article  ADS  Google Scholar 

  53. P. Decowski et al., Nucl. Phys. A 110, 129 (1968).

    Article  ADS  Google Scholar 

  54. L. G. Moretto, Nucl. Phys. A 185, 145 (1972).

    Article  ADS  Google Scholar 

  55. M. Arnould and F. Tondeur, in Proceedings of the 4th International Conference on Nuclei Far from Stability, Helsingør, Denmark, CERN 81-09 (CERN, Geneve, 1981), Vol. 2, p. 229.

    Google Scholar 

  56. P. Demetriou and S. Goriely, Nucl. Phys. A 695, 95 (2001).

    Article  ADS  Google Scholar 

  57. M. Hillman and J. R. Grover, Phys. Rev. 185, 1303 (1969).

    Article  ADS  Google Scholar 

  58. S. Hilaire and J. P. Delaroche, Nuclear Data for Science and Technology, Ed. by Reffo et al. (Italian Physical Society, 1997), p. 694.

    Google Scholar 

  59. J. B. French and K. F. Ratcliff, Phys. Rev. C 3, 94 (1971).

    Article  ADS  Google Scholar 

  60. N. Cerf, Phys. Rev. C 49, 852 (1994); Phys. Rev. C 50, 836 (1994).

    Article  ADS  Google Scholar 

  61. H. Nakada and Y. Alhassid, Phys. Rev. Lett. 79, 2939 (1997).

    Article  ADS  Google Scholar 

  62. Y. Alhassid, S. Liu, and H. Nakada, Phys. Rev. Lett. 83, 4265 (1999).

    Article  ADS  Google Scholar 

  63. C. Özen, Y. Alhassid, and H. Nakada, Phys. Rev. Lett. 110, 042502 (2013).

    Article  ADS  Google Scholar 

  64. S. Hilaire, J. P. Delaroche, and M. Girod, Eur. Phys. J. A 12, 169 (2001).

    Article  ADS  Google Scholar 

  65. S. Hilaire and S. Goriely, Nucl. Phys. A 779, 63 (2006).

    Article  ADS  Google Scholar 

  66. S. Hilaire, M. Girod, S. Goriely, and A. J. Koning, Phys. Rev. C 86, 064317 (2012).

    Article  ADS  Google Scholar 

  67. A. V. Ignatyuk, IAEA Report INDC(CCP)-233/L (IAEA, Vienna, 1985).

    Google Scholar 

  68. M. Sin et al., in Proceedings of the International Conference on Nuclear Data for Science and Technology, Ed. by O. Bersillon et al. (EDP Sciences, 2008), p. 313.

  69. S. Goriely, J. Nucl. Sci. Technol. Suppl. 2, 536 (2002).

    Article  Google Scholar 

  70. S. Goko et al., Phys. Rev. Lett. 96, 192501 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Achakovskiy.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamerdzhiev, S.P., Achakovskiy, O.I., Avdeenkov, A.V. et al. On microscopic theory of radiative nuclear reaction characteristics. Phys. Atom. Nuclei 79, 567–580 (2016). https://doi.org/10.1134/S106377881604013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377881604013X

Navigation