Log in

Attosecond Dynamics of Photoexcitation of the Hydrogen Atom by Ultrashort Laser Pulses

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of photoexcitation of the hydrogen atom in the discrete and continuous spectra under the action of laser pulses in the attosecond range of time and pulse durations has been analyzed using perturbation theory. It is shown that over time interval shorter than or on the order of pulse duration, the time dependence of the photoexcitation probability is generally oscillating by nature. It has been established that for certain values of parameters, the envelope of this dependence has a peak, the position of which is determined by the pulse duration and carrier frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Hassan, A. Wirth, I. Grguras, et al., Rev. Sci. Instrum. 83, 111301 (2012).

    Article  ADS  Google Scholar 

  2. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  3. T. Gaumnitz, A. Jain, Y. Pertot, et al., Opt. Express 25, 27506 (2017).

    Article  ADS  Google Scholar 

  4. A. V. Gets and V. P. Krainov, Contrib. Plasma Phys. 53, 140 (2013).

    Article  ADS  Google Scholar 

  5. F. B. Rosmej, V. A. Astapenko, and V. S. Lisitsa, Phys. Rev. A 90, 043421 (2014).

    Article  ADS  Google Scholar 

  6. V. A. Astapenko and N. N. Moroz, J. Exp. Theor. Phys. 127, 58 (2018).

    Article  ADS  Google Scholar 

  7. V. A. Astapenko, V. S. Lisitsa, and A. V. Yakovets, J. Exp. Theor. Phys. 127, 1003 (2018).

    Article  ADS  Google Scholar 

  8. V. Gruson, L. Barreau, A. Jimenez-Galan, et al., Science (Washington, DC, U. S.) 354, 734 (2016).

    Article  ADS  Google Scholar 

  9. A. Kaldun, A. Blattermann, V. Stooß, et al., Science (Washington, DC, U. S.) 354, 738 (2016).

    Article  ADS  Google Scholar 

  10. V. Prasad, B. Dahiya, and K. Yamashita, Phys. Scr. 82, 055302 (2010).

    Article  ADS  Google Scholar 

  11. V. Prasad, private commun.

  12. V. A. Astapenko, Phys. Lett. A 374, 1585 (2010).

    Article  ADS  Google Scholar 

  13. Q. Lin, Jian Zheng, and W. Becker, Phys. Rev. Lett. 97, 253902 (2006).

    Article  ADS  Google Scholar 

  14. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, Oxford, 1982).

  15. V. A. Astapenko, The Interaction of Electromagnetic Pulses with Classical and Quantum Systems (MFTI, Moscow, 2013) [in Russian].

    Google Scholar 

Download references

Funding

This study was performed under State assignment no. 3.9890.2017/8.9 of the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Astapenko.

Additional information

Translated by N. Wadhwa

APPENDIX

APPENDIX

We can write the following expression for the photoexcitation probability under the action of field E(t) (we assume that E(t → ±∞) = 0) in the dipole approximation in the first order of perturbation theory:

$$W(t) = \frac{1}{{{{\hbar }^{2}}}}\int\limits_{ - \infty }^t {dt{\kern 1pt} '\int\limits_{ - \infty }^t {dt{\kern 1pt} ''\langle \hat {d}(t{\kern 1pt} ')\hat {d}(t{\kern 1pt} '')\rangle E(t{\kern 1pt} ')E(t{\kern 1pt} '').} } $$
(A.1)

Angle brackets indicate averaging over the initial state of the target.

Expression (A.1) contains the dipole moment correlator (DMC) that can be written for a stationary system in form

$$\langle \hat {d}(t{\kern 1pt} ')\hat {d}(t{\kern 1pt} '')\rangle = K(t{\kern 1pt} ',t{\kern 1pt} '') = K(t{\kern 1pt} ''\, - t{\kern 1pt} ').$$
(A.2)

This gives

$$W(t) = \frac{1}{{{{\hbar }^{2}}}}\int\limits_{ - \infty }^t {dt{\kern 1pt} '\int\limits_{ - \infty }^t {dt{\kern 1pt} ''{\kern 1pt} K(t{\kern 1pt} ''\, - t{\kern 1pt} ')E(t{\kern 1pt} ')E(t{\kern 1pt} '').} } $$
(A.3)

Passing to the Fourier transform of the DMC, we obtain

$$K(t{\kern 1pt} ''\, - t{\kern 1pt} ') = \int\limits_{ - \infty }^\infty {\frac{{d\omega }}{{2\pi }}} \exp ( - i\omega (t{\kern 1pt} ''\, - t{\kern 1pt} '))K(\omega ).$$
(A.4)

Using the relation between the DMC and the photoexcitation cross section [15], we obtain

$$K(\omega ) = \frac{{\hbar c}}{{2\pi \omega }}\sigma (\omega ).$$
(A.5)

After simple transformations

$$\begin{gathered} W(t) = \frac{c}{{4{{\pi }^{2}}\hbar }}\int\limits_{ - \infty }^t {dt{\kern 1pt} '\int\limits_{ - \infty }^t {dt{\kern 1pt} ''\int {d\omega } } } \\ \times \exp ( - i\omega (t{\kern 1pt} ''\, - t{\kern 1pt} '))\frac{{\sigma (\omega )}}{\omega }E(t{\kern 1pt} ')E(t{\kern 1pt} '') \\ \end{gathered} $$
(A.6)

and

$$\begin{gathered} W(t) = \frac{c}{{4{{\pi }^{2}}}}\int\limits_0^\infty {d\omega \frac{{\sigma (\omega )}}{{\hbar \omega }}\int\limits_{ - \infty }^t {dt{\kern 1pt} '\int\limits_{ - \infty }^t {dt{\kern 1pt} ''} } } \\ \times \exp ( - i\omega (t{\kern 1pt} ''\, - t{\kern 1pt} '))E(t{\kern 1pt} ')E(t{\kern 1pt} '') \\ \end{gathered} $$
(A.7)

we pass to formula (1):

$$W(t) = \frac{c}{{4{{\pi }^{2}}}}\int\limits_0^\infty {d\omega \frac{{\sigma (\omega )}}{{\hbar \omega }}} {{\left| {\int\limits_{ - \infty }^t {dt{\kern 1pt} '{\text{exp}}(i\omega t{\kern 1pt} ')E(t{\kern 1pt} ')} } \right|}^{2}}.$$
(A.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astapenko, V.A. Attosecond Dynamics of Photoexcitation of the Hydrogen Atom by Ultrashort Laser Pulses. J. Exp. Theor. Phys. 130, 56–61 (2020). https://doi.org/10.1134/S1063776119120124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119120124

Navigation