Log in

High-frequency solitons in media with induced scattering from damped low-frequency waves with nonuniform dispersion and nonlinearity

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons, and Chaos (Cambridge University Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  2. G. P. Agrawal, Nonlinear Fiber Optic (Academic, San Diego, California, United States, 2001).

    Google Scholar 

  3. J. Yang, Solitons in Field Theory and Nonlinear Analysis (Springer-Verlag, New York, 2001).

    Book  MATH  Google Scholar 

  4. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, California, United States, 2003).

    Google Scholar 

  5. L. A. Dickey, Soliton Equation and Hamiltonian Systems (World Scientific, New York, 2005). µ*

    Google Scholar 

  6. B. A. Malomed, Soliton Management in Periodic Systems (Springer-Verlag, New York, 2006).

    MATH  Google Scholar 

  7. T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, 2006).

    MATH  Google Scholar 

  8. R. E. Noskov, P. A. Belov, and Yu. S. Kivshar, Phys. Rev. Lett. 108, 093901 (2012).

    Article  ADS  Google Scholar 

  9. R. E. Noskov, D. A. Smirnova, and Yu. S. Kivshar, Phys. Eng. Sci. 372, 20140010 (2014).

    Article  Google Scholar 

  10. R. E. Noskov, P. A. Belov, and Yu. S. Kivshar, Opt. Express 20, 2733 (2012).

    Article  ADS  Google Scholar 

  11. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34 (1), 62 (1972).

    ADS  MathSciNet  Google Scholar 

  12. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).

    Article  ADS  Google Scholar 

  13. J. R. Oliviera and M. A. Moura, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 4751 (1998).

    Article  Google Scholar 

  14. F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).

    Article  ADS  Google Scholar 

  15. J. P. Gordon, Opt. Lett. 11, 662(1986).

    Article  ADS  Google Scholar 

  16. Y. Kodama, J. Stat. Phys. 39, 597 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  17. Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23, 510 (1987).

    Article  ADS  Google Scholar 

  18. C. E. Zaspel, Phys. Rev. Lett. 82, 723 (1999).

    Article  ADS  Google Scholar 

  19. B. Hong and D. Lu, Int. J. Nonlinear Sci. 7, 360 (2009).

    MathSciNet  MATH  Google Scholar 

  20. V. I. Karpman, Eur. Phys. J. B 39, 341 (2004).

    Article  ADS  Google Scholar 

  21. E. M. Gromov and V. I. Talanov, J. Exp. Theor. Phys. 83 (1), 73 (1996).

    ADS  Google Scholar 

  22. E. M. Gromov and V. V. Tyutin, Wave Motion 28, 13 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  23. E. M. Gromov and V. I. Talanov, Chaos 10, 551 (2000).

    Article  ADS  Google Scholar 

  24. M. A. Obregon and Yu. A. Stepanyants, Phys. Lett. A 249, 315 (1998).

    Article  ADS  Google Scholar 

  25. M. Scalora, M. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, Phys. Rev. Lett. 95, 013902 (2005).

    Article  ADS  Google Scholar 

  26. S. C. Wen, Y. Wang, W. Su, Y. **ang, X. Fu, and D. Fan, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 73, 036617 (2006).

    Article  ADS  Google Scholar 

  27. M. Marklund, P. K. Shukla, and L. Stenflo, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 73, 037601 (2006).

    Article  ADS  Google Scholar 

  28. N. L. Tsitsas, N. Rompotis, I. Kourakis, P. G. Kevrekidis, and D. J. Frantzeskakis, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 79, 037601 (2009).

    Article  ADS  Google Scholar 

  29. Y. S. Kivshar and B. A. Malomed, Opt. Lett. 18, 485 (1993).

    Article  ADS  Google Scholar 

  30. E. M. Gromov and V. V. Tyutin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 57 (4), 311 (2014).

    Google Scholar 

  31. B. A. Malomed and R. S. Tasgal, J. Opt. Soc. Am. B 15, 162 (1998).

    Article  ADS  Google Scholar 

  32. F. Biancalama, D. V. Skrybin, and A. V. Yulin, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 70, 011615 (2004).

    Google Scholar 

  33. R.-J. Essiambre and G. P. Agraval, J. Opt. Soc. Am. B 14, 314 (1997).

    Article  ADS  Google Scholar 

  34. R.-J. Essiambre and G. P. Agrawal, J. Opt. Soc. Am. B 14, 323 (1997).

    Article  ADS  Google Scholar 

  35. A. Andrianov, S. Muraviev, A. Kim, and A. Sysoliatin, Laser Phys. 17, 1296 (2007).

    Article  ADS  Google Scholar 

  36. S. Chernikov, E. Dianov, D. Richardson, and D. N. Payne, Opt. Lett. 18, 476 (1993).

    Article  ADS  Google Scholar 

  37. E. M. Gromov and B. A. Malomed, J. Plasma Phys. 79, 1057 (2013).

    Article  ADS  Google Scholar 

  38. E. M. Gromov and B. A. Malomed, Opt. Commun. 320, 88 (2014).

    Article  ADS  Google Scholar 

  39. N. V. Aseeva, E. M. Gromov, and V. V. Tyutin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 56 (3), 173 (2013).

    Google Scholar 

  40. V. E. Zakharov, Sov. Phys. JETP 35 (5), 908 (1972).

    ADS  Google Scholar 

  41. E. M. Gromov and B. A. Malomed, Phys. Scr. 90 (6), 068021 (2015).

    Article  ADS  Google Scholar 

  42. A. V. Slyunyaev, J. Exp. Theor. Phys. 101 (5), 926 (2005).

    Article  ADS  Google Scholar 

  43. G. L. Lamb, Elements of Soliton Theory (Wiley, New York, 1980; Merkurii-Press, Moscow, 2001).

    Google Scholar 

  44. V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, J. Lightwave Technol. 9, 561 (1991).

    Article  ADS  Google Scholar 

  45. E. A. Ostrovskaya, S. F. Mingaleev, Yu. S. Kivshar, Yu. B. Gaididei, and P. L. Christiansen, Phys. Lett. A 282, 157 (2001).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Aseeva.

Additional information

Original Russian Text © N.V. Aseeva, E.M. Gromov, V.V. Tyutin, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 6, pp. 1092–1097.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aseeva, N.V., Gromov, E.M. & Tyutin, V.V. High-frequency solitons in media with induced scattering from damped low-frequency waves with nonuniform dispersion and nonlinearity. J. Exp. Theor. Phys. 121, 955–960 (2015). https://doi.org/10.1134/S1063776115120092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115120092

Keywords

Navigation