Log in

X-ray Diffraction Study of Structural Changes in High-Strength Ceramics Based on Zirconium Oxide with Additions of Ytterbium and Neodymium Oxides after Hydrothermal Treatment

  • NANOMATERIALS AND CERAMICS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A surface structural analysis of two ceramic samples of zirconium oxide (ZrO2) sintered at 1550°C, stabilized in the tetragonal form, before and after hydrothermal treatment, has been performed by the Rietveld method based on X-ray diffraction (XRD) data. The first sample was zirconium oxide with addition of ytterbium oxide (3 mol %), and the second sample contained ytterbium (3 mol %) and neodymium (0.25 mol %) oxides. The hydrothermal treatment is found to change the phase composition. In the initial state, there are two tetragonal ZrO2 forms (t and t'). The processes of surface-layer dissolution and crystallization of the monoclinic ZrO2 modification occur during hydrothermal treatment. ZrO2 crystals are shaped as plates elongated in the [111] direction, with developed {001} faces. Addition of neodymium oxide slows down the monoclinic-phase formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Chevalier, A. Liens, H. Reveron, et al., J. Am. Ceram. Soc. 103, 1482 (2020). https://doi.org/10.1111/jace.16903

    Article  Google Scholar 

  2. C. Piconi and G. Maccauro, Biomaterials 20, 1 (1999). https://doi.org/10.1016/S0142-961(98)00010-6

    Article  Google Scholar 

  3. J. Chevalier, Biomaterials 27, 535 (2006). https://doi.org/10.1016/j.biomaterials.2005.07.034

    Article  Google Scholar 

  4. J. R. Kelly and I. Denry, Dental Mater. 24, 289 (2008). https://doi.org/10.1016/j.dental.2007.05.005

    Article  Google Scholar 

  5. L. Borshers, M. Stiesch, F.-W. Bach, et al., Acta Biomater. 6, 4547 (2010). https://doi.org/10.1016/j.actbio.2010.07.025

    Article  Google Scholar 

  6. M. Cattani-Lorente, S. Scherrer, P. Ammann, et al., Acta Biomater. 7, 858 (2011). https://doi.org/10.1016/j.actbio.2010.09.020

    Article  Google Scholar 

  7. P. Kohorst, L. Borchers, J. Strempel, et al., Acta Biomater. 8, 1213 (2012). https://doi.org/10.1016/j.actbio.2011.11.016

    Article  Google Scholar 

  8. L. I. Podzorova, S. A. Titov, A. A. Il’icheva, et al., Materialovedenie, No. 7, 52 (2015).

  9. L. I. Podzorova, A. A. Il’icheva, N. A. Mikhailinoi, et al., Perspekt. Mater., No. 2, 27 (2017).

  10. M. Yashima, N. Ishizawa, and M. Yoshimura, J. Am. Ceram. Soc. 76, 641 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03654.x

    Article  Google Scholar 

  11. M. Yashima, S. Sasaki, M. Kakihana, et al., Acta Crystallogr. B 50, 663 (1994). https://doi.org/10.1107/S0108768194006257

    Article  Google Scholar 

  12. M. Yashima, M. Kakihana, and M. Yoshimura, Solid State Ionics 86–88, 1131 (1996). https://doi.org/10.1016/0167-2738(96)00386-4

    Article  Google Scholar 

  13. W. Kraus and G. Nolze, J. Appl. Crystallogr. 29, 301 (1996). https://doi.org/10.1107/S0021889895014920

    Article  Google Scholar 

  14. J. Rodriguez-Carvajal, Physica B 192, 55 (1993). https://doi.org/10.1016/0921-4526(93)90108-1

    Article  ADS  Google Scholar 

  15. M. Yoshimura, T. Noma, K. Kawabata, and S. Somiya, J. Mater. Sci. Lett. 6, 465 (1987). https://doi.org/10.1007/BF01756800

    Article  Google Scholar 

  16. M. Winterer, R. Delaplane, and R. McGreevy, J. Appl. Crystallogr. 35, 434 (2002). https://doi.org/10.1107/S0021889802006829

    Article  Google Scholar 

  17. M. Gonzalez, C. Moure, J. R. Jurado, and P. Duran, J. Mater. Sci. 28, 3451 (1993). https://doi.org/10.1007/BF01159821

    Article  ADS  Google Scholar 

  18. L. Kumari and W. Z. Li, Cryst. Growth Des. 9, 3874 (2009). https://doi.org/10.1021/cg800711m

    Article  Google Scholar 

  19. H. Nishizawa, N. Yamasaki, K. Matsuoka, and H. Mitsushio, J. Am. Ceram. Soc. 65, 343 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10467.x

    Article  Google Scholar 

  20. S. Krumm, Mater. Sci. Forum. 228–231, 183 (1996). https://doi.org/10.4028 www.scientific.net/MSF.228-231

    Article  Google Scholar 

  21. L. Hallmann, P. Ulmer, E. Reusser, et al., J. Eur. Ceram. Soc. 32, 4091 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.07.032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Sirotinkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirotinkin, V.P., Podzorova, L.I., Mikhailina, N.A. et al. X-ray Diffraction Study of Structural Changes in High-Strength Ceramics Based on Zirconium Oxide with Additions of Ytterbium and Neodymium Oxides after Hydrothermal Treatment. Crystallogr. Rep. 67, 278–285 (2022). https://doi.org/10.1134/S1063774522020171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522020171

Navigation