Log in

Neutron Spectroscopy: Principles and Equipment

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The physical and methodical principles of inelastic thermal-neutron scattering as applied for studying condensed matter have been briefly described. The basic information essential for understanding the experimental method is presented in a concise form, accessible for non-specialists. This information concerns the crystal and time-of-flight experimental techniques, the use of coherent and incoherent neutron scattering, the main approaches to the study of the atomic and magnetic dynamics of condensed matter, etc. The actual types of neutron sources and the ways to deliver neutron flux to sample are presented. The main principles of operating neutron spectrometers are briefly described. The available and promising equipment designed to create and change physical conditions on a sample (e.g., temperature, pressure, magnetic field) is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Energy is related to frequency through Planck’s constant and to temperature through the Boltzmann constant: E = hν = ħω = kBT. Although both parameters are obviously equivalent, lattice vibrations or phonons are discussed more often in terms of frequency, whereas energy is a more conventional term for other excitations (in particular, of electron nature). The approximate ratios of values for various energy units used in spectroscopy are as follows: 1 meV ≈ 0.242 THz ≈ 8 cm–1 ≈ 11.6 K.

  2. Spin incoherence at neutron interaction with a spin-carrying nucleus is of dual nature due to the possibility of both spin-flip and non-spin-flip neutron scattering from a nucleus at equiprobable orientation of nuclear spins in the sample. The isotopic incoherence is determined by processes of neutron non-spin-flip scattering from a nucleus. Coherent scattering also occurs without a change in the spin states of neutron and nucleus.

REFERENCES

  1. I. I. Gurevich and L. V. Tarasov, Physics of Low-Energy Neutrons (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  2. Yu. Z. Nosik, R. P. Ozerov, and K. Hennig, Structural Neutron Diffraction Analysis, Vol. 1: Neutrons and Solid (Atomizdat, Moscow, 1979) [in Russian]; Yu. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutron Diffraction of Magnetic Materials, Vol. 2 (Consultants Bureau, New York, 1991); Yu. A. Izyumov and N. A. Chernoplekov, Neutron Spectroscopy, Vol. 3 (Energoatomizdat, Moscow, 1983) [in Russian].

  3. V. F. Turchin, Slow Neutrons (Gosatomizdat, Moscow, 1963) [in Russian].

    Google Scholar 

  4. G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering (Cambridge Univ. Press, 2012). https://doi.org/10.1017/CBO9781139107808

  5. https://www.ill.eu/users/instruments/instruments-list /thales/.

  6. http://www.isis.stfc.ac.uk/instruments/mari/.

  7. B. Dorner, Coherent Inelastic Neutron Scattering in Lattice Dynamics (Springer, Berlin, 1982).

    Book  Google Scholar 

  8. G. Shirane, S. M. Shapiro, and J. M. Tranquada, Neutron Scattering with a Triple-Axis Spectrometer (Cambridge Univ. Press, 2004). https://doi.org/10.1017/CBO9780511534881

  9. V. F. Sears, Neutron News 3 (3), 26 (1992). https://doi.org/10.1080/10448639208218770

    Article  Google Scholar 

  10. http://www.ati.ac.at/%7Eneutropt/scattering/ScatteringLengthsAdvTable.pdf.

  11. M. M. Bredov, B. A. Kotov, N. M. Okuneva, et al., Fiz. Tverd. Tela 9, 237 (1967).

    Google Scholar 

  12. W. Marshall and S. W. Lovesey, Theory of Thermal Neutron Scattering (Clarendon, Oxford, 1971).

    Google Scholar 

  13. E. Holland-Moritz, D. Wohlleben, and M. Loewenhaupt, Phys. Rev. B 25, 7482 (1982). https://doi.org/10.1103/PhysRevB.25.7482

    Article  ADS  Google Scholar 

  14. E. Balcar and S. W. Lovesey, Theory of Magnetic Neutron and Photon Scattering (Oxford Univ. Press, 1989).

    Google Scholar 

  15. Mixed Valence Compounds. NATO Advanced Study Institute Series C: Mathematical and Physical Sciences, Vol. 58, Ed. by D. B. Brown (Kluwer, Dordrecht, 1980). https://doi.org/10.1007/978-94-009-9076-0

    Book  Google Scholar 

  16. P. A. Alekseev, A. S. Ivanov, B. Dorner, et al., Europhys. Lett. 10, 457 (1989). https://doi.org/10.1209/0295-5075/10/5/012

    Article  ADS  Google Scholar 

  17. H. Rauch, J. Summhammer, and H. Weinfurter, Neutron Scattering in the “Nineties,” Proc. Int. Conf. IAEA Vienna, 1985, p. 53.

  18. A. Steyerl, Nucl. Instrum. Methods Phys. Res., Sect. A 125, 461 (1975). https://doi.org/10.1016/0029-554X(75)90265-7

    Article  Google Scholar 

  19. https://www.ill.eu/fr/utilisateurs/instruments/instruments-list/in5/.

  20. M. B. Stone, J. L. Niedziela, D. L. Abernathy, et al., Rev. Sci. Instrum. 85, 045113 (2014). https://neutrons.ornl.gov/instruments/.https://doi.org/10.1063/1.4870050

    Article  ADS  Google Scholar 

  21. https://www.isis.stfc.ac.uk/Pages/Instruments.aspx.

  22. G. Ehlers, A. A. Podlesnyak, J. L. Niedziela, et al., Rev. Sci. Instrum. 82, 085108 (2011). https://doi.org/10.1063/1.3626935

    Article  ADS  Google Scholar 

  23. https://www.ill.eu/fr/utilisateurs/instruments/instruments-list/in1-taslagrange/.

  24. https://www.ill.eu/fr/utilisateurs/instruments/instruments-list/in16b/.

  25. https://neutrons.ornl.gov/vision/.

  26. M. Arai, Neutron Scattering–Fundamentals. Experimental Methods in the Physical Sciences, Ed. by F. Fernandez-Alonso and D. L. Price (Academic, New York, 2013), Ch. 3, p. 245.

    Google Scholar 

  27. K. Lefmann, D. F. McMorrow, H. M. Rønnow, et al., Physica B 283, 343 (2000). https://doi.org/10.1016/S0921-4526(00)00335-5

    Article  ADS  Google Scholar 

  28. M. Jimenez-Ruiz, A. Hiess, R. Currat, et al., Physica B 385–386, 1086 (2006). https://doi.org/10.1016/j.physb.2006.05.373

    Article  ADS  Google Scholar 

  29. O. Sobolev, R. Hoffmann, H. Gibhardt, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 772, 63 (2015). https://doi.org/10.1016/j.nima.2014.11.007

    Article  Google Scholar 

  30. https://www.ill.eu/users/instruments/instruments-list /in12/ufo/.

  31. F. Demmel, A. Fleischmann, and W. Gläser, Nucl. Instrum. Methods Phys. Res., Sect. A 416, 115 (1998). https://doi.org/10.1016/S0168-9002(98)00559-2

    Article  Google Scholar 

  32. M. Kempa, B. Janousova, J. Saroun, et al., Physica B 385–386, 1080 (2006). https://doi.org/10.1016/j.physb.2006.05.371

    Article  ADS  Google Scholar 

  33. https://www.ill.eu/users/instruments/instruments-list /flatcone/.

  34. D. Hohlwein, A. Hoser, and W. Prandl, J. Appl. Crystallogr. 19, 262 (1986). https://doi.org/10.1107/S002188988608946X

    Article  Google Scholar 

  35. S. Klotz, Z. Kristallogr. 216, 420 (2001). https://doi.org/10.1524/zkri.216.8.420.20359

    Article  Google Scholar 

  36. R. M. Moon, T. Riste, and W. C. Koehler, Phys. Rev. 181 (2), 920 (1969). https://doi.org/10.1103/PhysRev.181.920

    Article  ADS  Google Scholar 

  37. F. Tasset, Physica B 297, 1 (2001). https://doi.org/10.1016/S0921-4526(00)00874-7

    Article  ADS  Google Scholar 

  38. F. Tasset, P. J. Brown, E. Lelievre-Berna, et al., Physica B 267–268, 69 (1999). https://doi.org/10.1016/S0921-4526(99)00029-0

    Article  ADS  Google Scholar 

  39. M. Janoschek, S. Klimko, R. Gähler, et al., Physica B 397, 125 (2007). https://doi.org/10.1016/j.physb.2007.02.074

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Alekseev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.S., Alekseev, P.A. Neutron Spectroscopy: Principles and Equipment. Crystallogr. Rep. 67, 18–35 (2022). https://doi.org/10.1134/S1063774522010072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522010072

Navigation