Log in

Formation of Dislocations and Twins As a Result of Uniaxial Compression of Magnesium Single Crystals: Molecular Dynamics Simulation

  • Real Structure of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

An atomistic simulation of the deformation of ideal magnesium crystal along the \([11\bar 20]\) crystallographic axis has been performed. The evolution of structural defects under load at T = 300–350 K is considered in detail. It is established that the nucleation of dislocations in an ideal crystal occurs when the stress reaches a level of 0.1G (G is the shear modulus). The acting deformation modes are found to be prismatic slip of a dislocations and \(\{ 10\bar 13\} \) twinning. The formation of dislocation networks and dislocation sites in the twinning plane is observed. Some reactions are proposed to describe the dislocation evolution in the \((\bar 3034)\) plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Daw and M. I. Baskes, Phys. Rev. B 29 (12), 6443 (1984).

    Article  ADS  Google Scholar 

  2. J. F. Stohr and J. P. Poirier, Philos. Mag., No. 25, 1313 (1972).

    Article  ADS  Google Scholar 

  3. T. Obara, H. Yoshinga, and S. Morozumi, Acta Metall. 21 (7), 845 (1973).

    Article  Google Scholar 

  4. S. Ando, N. Harada, and M. Tsushida, Key Eng. Mater. 345–346, 101 (2007).

    Article  Google Scholar 

  5. B. A. Grinberg, M. A. Ivanov, O. V. Antonova, and A. M. Vlasova, Crystallogr. Rep. 57 (4), 541 (2012).

    Article  ADS  Google Scholar 

  6. Y. Minonishy, S. Ishioka, M. Koiwa, and S. Morozumi, Philos. Mag. A 44 (6), 1225 (1981).

    Article  ADS  Google Scholar 

  7. M. H. Liang and D. J. Bacon, Philos. Mag. A 53 (2), 181 (1986).

    Article  ADS  Google Scholar 

  8. M. H. Liang and D. J. Bacon, Philos. Mag. A 53 (2), 205 (1986).

    Article  ADS  Google Scholar 

  9. D. J. Bacon and V. Vitek, Metall. Mater. Trans. A 33, 721 (2002).

    Article  Google Scholar 

  10. J. R. Morris, K. M. Ho, K. Y. Chen, et al., Modell. Simul. Mater. Sci. Eng. 8, 25 (2000).

    Article  ADS  Google Scholar 

  11. Y. Minonishy, S. Ishioka, M. Koiwa, and S. Morozumi, Philos. Mag. A 45 (5), 835 (1982).

    Article  ADS  Google Scholar 

  12. X.-Z. Tang, Y.-F. Guo, and S. X. Y.-S. Wang, Philos. Mag. 94 (19), 2013 (2015).

    Article  ADS  Google Scholar 

  13. J. Wang, J. P. Hirth, and C. N. Tome, Acta Mater. 57, 5521 (2009).

    Article  Google Scholar 

  14. L. Capolungo and I. J. Beyerlein, Phys. Rev. B 78, 024117 (2008).

    Article  ADS  Google Scholar 

  15. S. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  16. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  ADS  Google Scholar 

  17. D. Y. Sun, M. I. Mendelev, C. A. Becker, et al., Phys. Rev. B 73, 024116 (2006).

    Article  ADS  Google Scholar 

  18. J. A. Yasi, T. Nogaret, D. R. Trinkle, et al., Modell. Simul. Mater. Sci. Eng. 17, 055012 (2009).

    Article  ADS  Google Scholar 

  19. A. Stukowski and K. Albe, Modell. Simul. Mater. Sci. Eng. 18, 085001 (2010).

    Article  ADS  Google Scholar 

  20. A. Stukowski, V. V. Bulatov, and A. Arsenlis, Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).

    Article  ADS  Google Scholar 

  21. A. Chapuis and J. H. Driver, Acta Mater. 59 (5), 1986 (2010).

    Article  Google Scholar 

  22. H. Yoshinaga, T. Obara, and S. Morozumi, Mater. Sci. Eng., No. 12, 255 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vlasova.

Additional information

Original Russian Text © A.M. Vlasova, A.Yu. Nikonov, 2018, published in Kristallografiya, 2018, Vol. 63, No. 3, pp. 379–387.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasova, A.M., Nikonov, A.Y. Formation of Dislocations and Twins As a Result of Uniaxial Compression of Magnesium Single Crystals: Molecular Dynamics Simulation. Crystallogr. Rep. 63, 331–338 (2018). https://doi.org/10.1134/S1063774518030318

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774518030318

Navigation