Log in

Photometric and spectroscopic study of the supergiant with an infrared excess V1027 Cygni

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the results of our UBV and JHKLM photometry for the semiregular pulsating variable V1027 Cyg, a supergiant with an infrared excess, over the period from 1997 to 2015 (UBV) and in 2009–2015 (JHKLM). Together with the new data, we analyze the photometric observations of V1027 Cyg that we have obtained and published previously. Our search for a periodicity in the UBV brightness variations has led to several periods from P = 212d to 320d in different time intervals. We have found the period P = 237d based on our infrared photometry. The variability amplitude, the lightcurve shape, and themagnitude of V1027 Cyg atmaximum light change noticeably from cycle to cycle. The deepest minimum was observed in 2011, when the amplitudes of brightness variations in the star reached the following values: ΔU = 1 m. 28, ΔB = 1 m. 10, ΔV = 1 m. 05, ΔJ = 0 m. 30, ΔH = 0 m. 35, ΔK = 0 m. 32, ΔL = 0 m. 26, and ΔM = 0 m. 10. An ambiguous correlation of the BV and UB colors with the brightness has been revealed. For example, a noticeable bluing of the star was observed during the deep 1992, 2008, and 2011 minima, while the variations with smaller amplitudes show an increase in B − V at the photometric minima. The spectral energy distribution for V1027 Cyg from our photometry in the range 0.36 (U)–5.0 (M) μm corresponds to spectral types from G8I to K3I at different phases of the pulsation cycle. Low-resolution spectra of V1027 Cyg in the range λ4400–9200 ˚A were taken during 16 nights over the period 1995–2015. At the 1995 and 2011 photometric minima the star’s spectrum exhibited molecular TiO bands whose intensity corresponded to spectral types M0–M1, while the photometric data point to a considerably earlier spectral type. We hypothesize that the TiO bands are formed in the upper layers of the extended stellar atmosphere. We have measured the equivalent widths of the strongest absorption lines, in particular, the infrared Ca II triplet in the spectrum of V1027 Cyg. The calcium triplet (Ca T) with W λ(Ca T) = 20.3 ± 1.8 ˚A as a luminosity indicator for supergiants places V1027 Cyg in the region of the brightest G–K supergiants. V1027 Cyg has been identified with the infrared source IRAS 20004+2955 and is currently believed to be a candidate for post-AGB stars. The evolutionary status of the star and its difference from other post-AGB objects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Andrievsky, Astron. Nachr. 319, 239 (1998).

    Article  ADS  Google Scholar 

  2. A. Arellano Ferro and E. E. Mendoza, Astron. J. 106, 2516 (1993).

    Article  ADS  Google Scholar 

  3. A. Arellano Ferro, S. Giridhar, and P. Mathias, Astron. Astrophys. 368, 250 (2001).

    Article  ADS  Google Scholar 

  4. A. Arellano Ferro, S. Giridhar, and E. Rojo Arellano, Rev.Mex. Astron. Astrofís. 39, 3 (2003).

    ADS  Google Scholar 

  5. V. P. Arkhipova, N. P. Ikonnikova, R. I. Noskova, and S. Yu. Shugarov, Astron. Tsirk., No. 1551 (1991).

  6. V. P. Arkhipova, N. P. Ikonnikova, R. I. Noskova, and S. Yu. Shugarov, Astron. Lett. 18, 418 (1992).

    Google Scholar 

  7. V. P. Arkhipova, V. F. Esipov, N. P. Ikonnikova, R. I. Noskova, S. Yu. Shugarov, and N. A. Gorynya, Astron. Lett. 23, 690 (1997).

    ADS  Google Scholar 

  8. V. P. Arkhipova, N. P. Ikonnikova, G. V. Komissarova, and V. F. Esipov, Astron. Lett. 32, 45 (2006).

    Article  ADS  Google Scholar 

  9. V. P. Arkhipova, N. P. Ikonnikova, and G. V. Komissarova, Astron. Lett. 36, 269 (2010).

    Article  ADS  Google Scholar 

  10. M. B. Bogdanov and O. G. Taranova, Astron. Rep. 86, 850 (2009).

    Article  ADS  Google Scholar 

  11. A. J. Cenarro, J. Gorgas, N. Cardiel, A. Vazdekis, and R. F. Peletier, Mon. Not. R. Astron. Soc. 329, 863 (2002).

    Article  ADS  Google Scholar 

  12. T. J. Deeming, Astrophys. Space Sci. 36, 137 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  13. J. H. He, R. Szczerba, T. I. Hasegawa, and M. R. Schmidt, Astrophys. J. Suppl. Ser. 210, 26 (2014).

    Article  ADS  Google Scholar 

  14. E. Hog, C. Fabricius, V. V. Makarov, S. Urban, T. Corbin, G. Wycoff, U. Bastian, P. Schwekendiek, and A. Wicenec, Astron. Astrophys. 355, L27 (2000).

    ADS  Google Scholar 

  15. B. J. Hrivnak, Sun Kwok, and K.M. Volk, Astrophys. J. 346, 265 (1989).

    Article  ADS  Google Scholar 

  16. B. J. Hrivnak, W. Lu, R. E. Maupin, and B. D. Spitzbart, Astrophys. J. 709, 1042 (2010).

    Article  ADS  Google Scholar 

  17. B. J. Hrivnak, W. Lu, and K. A. Nault, Astron. J. 149, 184 (2015).

    Article  ADS  Google Scholar 

  18. H. L. Johnson, R. I. Mitchel, B. Iriarte, and W. Z. Wisniewski, Comm. Lunar Planet. Lab. 4, 99 (1966).

    ADS  Google Scholar 

  19. J. E. Jones, D. M. Alloin, and B. J. T. Jones, Astrophys. J. 283, 457 (1984).

    Article  ADS  Google Scholar 

  20. P. C. Keenan and R. McNeil, An Atlas of Spectra of the Cooler Stars (Ohio State Univ. Press, Columbus, 1976).

    Google Scholar 

  21. V. G. Klochkova, Mon. Not. R. Astron. Soc. 272, 710 (1995).

    ADS  Google Scholar 

  22. V. G. Klochkova, T. V. Mishenina, and V. E. Panchuk, Astron. Lett. 26, 398 (2000).

    Article  ADS  Google Scholar 

  23. V. G. Klochkova, V. E. Panchuk, and N. S. Tavolzhanskaya, Astron. Lett. 28, 49 (2002).

    Article  ADS  Google Scholar 

  24. V. G. Klochkova, Astrophys. Bull. 69, 279 (2014).

    Article  ADS  Google Scholar 

  25. J. Koornneef, Astron. Asrophys. 128, 84 (1983).

    ADS  Google Scholar 

  26. B. V. Kukarkin, P. N. Kholopov, Y. P. Pskovsky, et al., General Catalogue of Variable Stars, 3rd ed. (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  27. P. Lenz and M. Breger, Commun. Asteroseismol. 146, 53 (2005).

    Article  ADS  Google Scholar 

  28. V. M. Lyutyj, Soobshch. GAISh No. 172, 30 (1971).

    Google Scholar 

  29. S. Meneses-Goytia, R. F. Peletier, S. C. Trager, J. Falco´ n-Barroso, M. Koleva, and A. Vazdekis, Astron. Astrophys. 582, A96 (2015).

    Article  ADS  Google Scholar 

  30. M. M. Miller Bertolami, ASP Conf. Ser. 493, 133 (2015).

    ADS  Google Scholar 

  31. J. A. Orosz, J. R. Thorstensen and R. K. Honeycutt, Mon. Not. R. Astron. Soc. 326, 1134 (2001).

    Article  ADS  Google Scholar 

  32. C. B. Pereira, S. Lorenz-Martins, and M. Machado, Astron. Astrophys. 422, 637 (2004).

    Article  ADS  Google Scholar 

  33. A. J. Pickles, Astrophys. J. Suppl. Ser. 59, 33 (1985).

    Article  ADS  Google Scholar 

  34. A. J. Pickles, Publ. Astron. Soc. Pasif. 110, 863 (1998).

    Article  ADS  Google Scholar 

  35. J. T. Rayner, M. C. Cushing, and W. D. Vacca, Astrophys. J. Suppl. Ser. 185, 289 (2009).

    Article  ADS  Google Scholar 

  36. N. G. Roman, Spectral Classification and Multicolor Photometry, Ed. by Ch. Ferenbach and B. Westerlund (D. Reidel, Dordrecht, 1973), p.36.

  37. D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys. J. 500, 525 (1998).

    Article  ADS  Google Scholar 

  38. S. G. Sergeev and F. Heisberger, A Users Manual for SPE (Wien, 1993).

    Google Scholar 

  39. V. Straižys, Multicolor Stellar Photometry (Pachart, Tucson, 1992).

    Google Scholar 

  40. V. L. Straižys, Metal-Deficient Stars (Mokslas, Vilnius, 1982) [in Russian].

    Google Scholar 

  41. O. Su árez, P. Garćia-Lario, A. Manchado, M. Manteiga, A. Ulla, and S. R. Pottasch, Astron. Astrophys. 458, 173 (2006).

    Article  ADS  Google Scholar 

  42. O. G. Taranova, V. I. Shenavrin, and A.M. Tatarnikov, Astron. Lett. 355, 472 (2009).

    Article  ADS  Google Scholar 

  43. B. Vandenbussche, D. Beintema, T. de Graauw, L. Decin, H. Feuchtgruber, A. Heras, D. Kester, F. Lahuis, et al., Astron. Astrophys. 390, 1033 (2002).

    Article  ADS  Google Scholar 

  44. S. B. Vickers, D. J. Frew, Q. A. Parker, and I. S. Bojičić, Mon. Not. R. Astron. Soc. 447, 1673 (2015).

    Article  ADS  Google Scholar 

  45. K. M. Volk and S. Kwok, Astrophys. J. 342, 345 (1989).

    Article  ADS  Google Scholar 

  46. I. B. Voloshina et al., Spectrophotometry of Bright Stars (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  47. A. A. Wachmann, Berg. Abh. 6, 3 (1961).

    Google Scholar 

  48. S. Winfrey, C. Barnbaum, M. Morris, and A. Omont, Bull. Am. Astron. Soc. 26, 1382 (1994).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Ikonnikova.

Additional information

Original Russian Text © V.P. Arkhipova, O.G. Taranova, N.P. Ikonnikova, V.F. Esipov, G.V. Komissarova, V.I. Shenavrin, M.A. Burlak, 2016, published in Pis’ma v Astronomicheskii Zhurnal, 2016, Vol. 42, No. 11, pp. 831–849.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipova, V.P., Taranova, O.G., Ikonnikova, N.P. et al. Photometric and spectroscopic study of the supergiant with an infrared excess V1027 Cygni. Astron. Lett. 42, 756–773 (2016). https://doi.org/10.1134/S1063773716100017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773716100017

Keywords

Navigation