Log in

Three-Dimensional Numerical Simulation of a Flow Structure in the Asynchronous Polar CD Ind in the Approximation of an Offset Dipole Magnetic Field of a White Dwarf

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The flow structure in the asynchronous polar CD Ind was investigated in the approximation of an offset dipole. Computation results made it possible to identify such system features as the drift of hot spots over the white dwarf surface, the flow structure dependence on the phase of the beat period, and the magnetic pole switching. To study the flow structure, a three-dimensional numerical MHD model based on the approximation of modified magnetic hydrodynamics was used. Numerical calculations were performed for ten phases of the beat period at a constant rate of mass transfer. In addition, for a more detailed study of the poles switching, additional calculation series were carried out in the corresponding phase ranges of the beat period. The energy release zones during the spin-orbit period shift in longitude on average by 20°, which corresponds to 0.05 of the orbital period phase. The magnetic pole switching occurs in a time that does not exceed 0.1 of the beat period. In the middle of this process, accretion occurs on both poles with the same intensity, and the flow resembles an arch. Based on the calculation results, synthetic light curves were constructed for the optical range of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Similar content being viewed by others

REFERENCES

  1. B. Warner, Cataclysmic Variable Stars (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  2. A. M. Cherepashchuk, Close Binary Stars (Fizmatlit, Moscow, 2013), Vols. 1, 2 [in Russian].

    Google Scholar 

  3. S. Tapia, Bull. Am. Astron. Soc. 8, 511 (1976).

    ADS  Google Scholar 

  4. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    Article  ADS  Google Scholar 

  5. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  6. C. G. Campbell, Magnetohydrodynamics in Binary Stars (Kluwer Academic, Dordrecht, 1997).

    Book  Google Scholar 

  7. C. G. Campbell and A. D. Schwope, Astron. Astrophys. 343, 132 (1999).

    ADS  Google Scholar 

  8. J. Patterson, Publ. Astron. Soc. Pacif. 106, 209 (1994).

    Article  ADS  Google Scholar 

  9. A. G. Zhilkin, D. V. Bisikalo, and P. A. Mason, Astron. Rep. 56, 257 (2012).

    Article  ADS  Google Scholar 

  10. S. Vennes, D. T. Wickramasinghe, J. R. Thorstensen, D. J. Christian, and M. J. Bessell, Astron. J. 112, 2254 (1996).

    Article  ADS  Google Scholar 

  11. A. Schwope, D. H. Buckley, D. O’Donoghue, G. Ha-singer, J. Trümper, and W. Voges, Astron. Astrophys. 326, 195 (1997).

    ADS  Google Scholar 

  12. G. Ramsay, D. H. Buckley, M. Cropper, and M. K. Har-rop-Allin, Mon. Not. R. Astron. Soc. 303, 96 (1999).

    Article  ADS  Google Scholar 

  13. G. Ramsay, D. H. Buckley, M. Cropper, M. K. Harrop-Allin, and S. Potter, Mon. Not. R. Astron. Soc. 316, 225 (2000).

    Article  ADS  Google Scholar 

  14. G. Myers, J. Patterson, E. de Miguel, F.-J. Hambsch, et al., Publ. Astron. Soc. Pacif. 129, 4204 (2017).

    Article  Google Scholar 

  15. P. Hakala, G. Ramsay, S. B. Potter, A. Beardmore, D. H. Buckley, and G. Wynn, Mon. Not. R. Astron. Soc. 486, 2549 (2019).

    Article  ADS  Google Scholar 

  16. A. R. King, Mon. Not. R. Astron. Soc. 261, 144 (1993).

    Article  ADS  Google Scholar 

  17. G. A. Wynn and A. R. King, Mon. Not. R. Astron. Soc. 275, 9 (1995).

    Article  ADS  Google Scholar 

  18. G. A. Wynn, A. R. King, and K. Horne, Mon. Not. R. Astron. Soc. 286, 436 (1997).

    Article  ADS  Google Scholar 

  19. A. R. King and G. A. Wynn, Mon. Not. R. Astron. Soc. 310, 203 (1999).

    Article  ADS  Google Scholar 

  20. A. J. Norton, J. A. Wynn, and R. V. Somerscales, A-strophys. J. 614, 349 (2004).

    ADS  Google Scholar 

  21. N. R. Ikhsanov, V. V. Neustroev, and N. G. Beskrovnaya, Astron. Astrophys. 421, 1131 (2004).

    Article  ADS  Google Scholar 

  22. A. J. Norton, O. W. Butters, T. L. Parker, and G. A. Wynn, Astrophys. J. 672, 524 (2008).

    Article  ADS  Google Scholar 

  23. Yu. V. Glagolevskij, Astrophys. Bull. 66, 144 (2011).

    Article  ADS  Google Scholar 

  24. E. S. Belen’kaya, Phys. Usp. 52, 765 (2009).

    Article  ADS  Google Scholar 

  25. K. M. Moore, R. K. Yadav, L. Kulowski, H. Cao, et al., Nature (London, U.K.) 561, 76 (2018).

    Article  ADS  Google Scholar 

  26. A. G. Zhilkin, Mat. Model. 22 (1), 110 (2010).

    Google Scholar 

  27. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 1063 (2010).

    Article  ADS  Google Scholar 

  28. E. P. Kurbatov, A. G. Zhilkin, and D. V. Bisikalo, Phys. Usp. 60, 798 (2017).

    Article  ADS  Google Scholar 

  29. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 53, 436 (2009).

    Article  ADS  Google Scholar 

  30. A. G. Zhilkin and D. V. Bisikalo, Adv. Space Res. 45, 437 (2010).

    Article  ADS  Google Scholar 

  31. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 840 (2010).

    Article  ADS  Google Scholar 

  32. D. V. Bisikalo, A. G. Zhilkin, P. V. Kaygorodov, V. A. Ustyugov, and M. M. Montgomery, Astron. Rep. 57, 327 (2013).

    Article  ADS  Google Scholar 

  33. V. A. Ustyugov, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 57, 811 (2013).

    Article  ADS  Google Scholar 

  34. A. M. Fateeva, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 60, 87 (2016).

    Article  ADS  Google Scholar 

  35. P. B. Isakova, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 59, 843 (2015).

    Article  ADS  Google Scholar 

  36. P. B. Isakova, N. R. Ikhsanov, A. G. Zhilkin, D. V. Bisikalo, and N. G. Beskrovnaya, Astron. Rep. 60, 498 (2016).

    Article  ADS  Google Scholar 

  37. P. B. Isakova, A. G. Zhilkin, D. V. Bisikalo, A. N. Semena, and M. G. Revnivtsev, Astron. Rep. 61, 560 (2017).

    Article  ADS  Google Scholar 

  38. E. P. Kurbatov, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 63, 25 (2019).

    Article  ADS  Google Scholar 

  39. A. G. Zhilkin, A. V. Sobolev, D. V. Bisikalo, and M. M. Gabdeev, Astron. Rep. 63, 751 (2019).

    Article  ADS  Google Scholar 

  40. T. Tanaka, J. Comp. Phys. 111, 381 (1994).

    Article  ADS  Google Scholar 

  41. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comp. Phys. 154, 284 (1999).

    Article  ADS  Google Scholar 

  42. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of the Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian].

  43. A. V. Koldoba, M. M. Romanova, G. V. Ustyugova, and R. V. E. Lovelace, Astrophys. J. 576, L53 (2002).

    Article  ADS  Google Scholar 

  44. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, J. V. Wick, and R. V. E. Lovelace, Astrophys. J. 595, 1009 (2003).

    Article  ADS  Google Scholar 

  45. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, J. V. Wick, and R. V. E. Lovelace, Astrophys. J. 610, 920 (2004).

    Article  ADS  Google Scholar 

  46. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, J. V. Wick, and R. V. E. Lovelace, Astrophys. J. 616, L151 (2004).

    Article  ADS  Google Scholar 

  47. D. P. Cox and E. Daltabuit, Astrophys. J. 167, 113 (1971).

    Article  ADS  Google Scholar 

  48. A. Dalgarno and R. A. McCray, Ann. Rev. Astron. Astrophys. 10, 375 (1972).

    Article  ADS  Google Scholar 

  49. J. C. Raymond, D. P. Cox, and B. W. Smith, Astrophys. J. 204, 290 (1976).

    Article  ADS  Google Scholar 

  50. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978).

    Google Scholar 

  51. S. I. Braginskii, Sov. Phys. JETP 10, 1005 (1960).

    MathSciNet  Google Scholar 

  52. S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, J. Plasma Phys. 63, 447 (2000).

    Article  ADS  Google Scholar 

  53. V. E. Zakharov, Zh. Prikl. Mekh. Tekh. Fiz. 1, 14 (1965).

    Google Scholar 

  54. P. S. Iroshnikov, Sov. Astron. 7, 566 (1963).

    ADS  MathSciNet  Google Scholar 

  55. R. H. Kraichnan, Phys. Fluids 8, 575 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  56. S. D. Drell, H. M. Foley, and M. A. Ruderman, J. Geophys. Res. 70, 3131 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  57. A. V. Gurevich, A. L. Krylov, and E. N. Fedorov, Sov. Phys. JETP 48, 1074 (1978).

    ADS  Google Scholar 

  58. R. R. Rafikov, A. V. Gurevich, and K. P. Zybin, J. Exp. Theor. Phys. 88, 297 (1999).

    Article  ADS  Google Scholar 

  59. D. A. Frank-Kamenetskii, Lectures on Plasma Physics (Moscow, Atomizdat, 1968) [in Russian].

    Google Scholar 

  60. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer, Switzerland, 2016).

    Book  Google Scholar 

  61. A. G. Zhilkin, D. V. Bisikalo, and V. A. Ustyugov, AIP Conf. Proc. 1551, 22 (2013).

    Article  ADS  Google Scholar 

  62. S. H. Lubow and F. H. Shu, Astrophys. J. 198, 383 (1975).

    Article  ADS  Google Scholar 

  63. A. V. Sobolev, A. G. Zhilkin, and D. V. Bisikalo, Nauch. Tr. INASAN, No. 3, 231 (2019).

    ADS  Google Scholar 

  64. V. V. Sobolev, Course of Theoretical Astrophysics (Nauka, Moscow, 1985; Natl. Aeronaut. Space Administration, 1969).

  65. G. R. Ricker, J. N. Winn, R. Vanderspek, D. W. Latham, et al., J. Astron. Tel. Instrum. Syst., No. 1, 014003 (2015).

  66. A. A. Boyarchuk, B. M. Shustov, I. S. Savanov, M. E. Sachkov, et al., Astron. Rep. 60, 1 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sobolev.

Ethics declarations

This study was supported by the Russian Foundation for Basic Research (contract No. 19-52-60001). For the study, the facilities of the collective usage center “The complex for modeling and processing the data of the mega-class scientific equipment” of the Scientific Center “Kurchatov Institute” (http://ckp.nrcki.ru/), as well as of the Interdepartamental computer cluster of the Russian Academy of Sciences were used.

Additional information

Translated by L. Yungelson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, A.V., Zhilkin, A.G., Bisikalo, D.V. et al. Three-Dimensional Numerical Simulation of a Flow Structure in the Asynchronous Polar CD Ind in the Approximation of an Offset Dipole Magnetic Field of a White Dwarf. Astron. Rep. 64, 467–498 (2020). https://doi.org/10.1134/S1063772920070069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920070069

Navigation