Log in

Features of the Flow Structure in the Vicinity of the Inner Lagrangian Point in Polars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The structures of plasma flows in close binary systems whose accretors have strong intrinsic magnetic fields are studied. A close binary system with the parameters of a typical polar is considered. The results of three-dimensional numerical simulations of the matter flow from the donor into the accretor Roche lobe are presented. Special attention is given to the flow structure in the vicinity of the inner Lagrangian point, where the accretion flow is formed. The interaction of the accretion-flow material from the donor’s envelope with the magnetic field of the accretor results in the formation of a hierarchical structure of the magnetosphere, because less dense areas of the accretion flow are stopped by the magnetic field of the white dwarf earlier than more dense regions. Taking into account this kind of magnetosphere structure can affect analysis results and interpretation of the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Warner, Cataclysmic Variable Stars (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  2. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    Article  ADS  Google Scholar 

  3. A. J. Norton, G. A. Wynn, and R. V. Somerscales, Astrophys. J. 614, 349 (2004).

    Article  ADS  Google Scholar 

  4. A. J. Norton, O. W. Butters, T. L. Parker, and G. A. Wynn, Astrophys. J. 672, 524 (2008).

    Article  ADS  Google Scholar 

  5. C. G. Campbell, Magnetohydrodynamics in Binary Stars (Kluwer Academic, Dordrecht, 1997).

    Google Scholar 

  6. S. H. Lubow and F. H. Shu, Astrophys. J. 198, 383 (1975).

    Article  ADS  Google Scholar 

  7. D. V. Bisikalo, A. A. Boyarchuk, O. V. Kuznetsov, and V. M. Chechetkin, Astron. Rep. 41, 794 (1997).

    ADS  Google Scholar 

  8. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  9. V. M. Lipunov, Astrophysics of Neutron Stars (Nauka, Moscow, 1987; Springer, Heidelberg, 1992).

    Google Scholar 

  10. L. D. Landau and E. M. Livshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Fizmatlit, Moscow, 2006; Pergamon, Oxford, 1975).

    Google Scholar 

  11. T. Tanaka, J. Comp. Phys. 111, 381 (1994).

    Article  ADS  Google Scholar 

  12. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comput. Phys. 154, 284 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  13. F. Giovannelli, S. Gaudenzi, C. Rossi, and A. Piccioni, Acta Astron. 33, 319 (1983).

    ADS  Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2003; Pergamon, New York, 1984).

    Google Scholar 

  15. D. P. Cox and E. Daltabuit, Astrophys. J. 167, 113 (1971).

    Article  ADS  Google Scholar 

  16. A. Dalgarno and R. A. McCray, Ann. Rev. Astron. Astrophys. 10, 375 (1972).

    Article  ADS  Google Scholar 

  17. J. C. Raymond, D. P. Cox, and B. W. Smith, Astrophys. J. 204, 290 (1976).

    Article  ADS  Google Scholar 

  18. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978).

    Google Scholar 

  19. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 53, 436 (2009).

    Article  ADS  Google Scholar 

  20. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 1063 (2010).

    Article  ADS  Google Scholar 

  21. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 840 (2010).

    Article  ADS  Google Scholar 

  22. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, J. V. Wick, and R. V. E. Lovelace, Astrophys. J. 595, 1009 (2003).

    Article  ADS  Google Scholar 

  23. G. S. Bisnovatyi-Kogan and S. G. Moiseenko, Astrophysics 59, 1 (2016).

    Article  ADS  Google Scholar 

  24. E. P. Kurbatov, A. G. Zhilkin, and D. V. Bisikalo, Phys. Usp. 60, 798 (2017).

    Article  ADS  Google Scholar 

  25. S. I. Braginskii, Sov. Phys. JETP 10, 1005 (1960).

    MathSciNet  Google Scholar 

  26. V. E. Zakharov, Zh. Prikl. Mekh. Tekh. Fiz. 1, 14 (1965).

    Google Scholar 

  27. P. S. Iroshnikov, Sov. Astron. 7, 566 (1963).

    ADS  MathSciNet  Google Scholar 

  28. R. H. Kraichnan, Phys. Fluids 8, 575 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  29. A. G. Zhilkin, D. V. Bisikalo, and P. A. Mason, Astron. Rep. 56, 257 (2012).

    Article  ADS  Google Scholar 

  30. D. V. Bisikalo, A. G. Zhilkin, P. V. Kaygorodov, V. A. Ustyugov, and M. M. Montgomery, Astron. Rep. 57, 327 (2013).

    Article  ADS  Google Scholar 

  31. V. A. Ustyugov, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 57, 811 (2013).

    Article  ADS  Google Scholar 

  32. P. B. Isakova, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 59, 843 (2015).

    Article  ADS  Google Scholar 

  33. A. M. Fateeva, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 60, 87 (2016).

    Article  ADS  Google Scholar 

  34. P. B. Isakova, N. R. Ikhsanov, A. G. Zhilkin, D. V. Bisikalo, and N. G. Beskrovnaya, Astron. Rep. 60, 498 (2016).

    Article  ADS  Google Scholar 

  35. P. B. Isakova, A. G. Zhilkin, D. V. Bisikalo, A. N. Semena, and M. G. Revnivtsev, Astron. Rep. 61, 560 (2017).

    Article  ADS  Google Scholar 

  36. S. D. Drell, H. M. Foley, and M. A. Ruderman, J. Geophys. Res. 70, 3131 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  37. A. V. Gurevich, A. L. Krylov, and E. N. Fedorov, Sov. Phys. JETP 48, 1074 (1978).

    ADS  Google Scholar 

  38. R. R. Rafikov, A. V. Gurevich, and K. P. Zybin, J. Exp. Theor. Phys. 88, 297 (1999).

    Article  ADS  Google Scholar 

  39. D. A. Frank-Kamenetskii, Lectures on Plasma Physics (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  40. F. F. Chen, Introduction to Plasma Physics (Springer, New York, 2012).

    Google Scholar 

  41. A. N. Semena and M. G. Revnivtsev, Astron. Lett. 38, 321 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Isakova.

Additional information

Original Russian Text © P.B. Isakova, A.G. Zhilkin, D.V. Bisikalo, 2018, published in Astronomicheskii Zhurnal, 2018, Vol. 95, No. 8, pp. 519–529.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isakova, P.B., Zhilkin, A.G. & Bisikalo, D.V. Features of the Flow Structure in the Vicinity of the Inner Lagrangian Point in Polars. Astron. Rep. 62, 492–501 (2018). https://doi.org/10.1134/S1063772918080024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918080024

Navigation