Log in

Development of Derivative Ratio Spectrophotometric Method for Simultaneous Determination of Copper β-resorcylate, Lead β-resorcylate, and Lead Oxide in Double base Propellants

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A new and validated method was described for the resolution of a ternary mixture of copper β‑resorcylate (CuR2), lead β-resorcylate (PbR2), and lead oxide in double base (DB) solid propellants without prior separation steps in accordance with military guidelines. Two sets of reaction and determination conditions were developed. The first set was based on reaction of Cu(II) and Pb(II) with 4-(2-pyridylazo)resorcinol reagent in alkaline media and using derivative ratio spectrophotometry for the simultaneous determination of Cu(II) and Pb(II) by measuring the peak intensities at 539 and 543 nm, respectively. In the second set, with hydrolysis of CuR2 and PbR2 in acetic acid medium, the released resorcylic acid was determined via complex formation of resorcylic acid with Fe(III) and absorbance measurement at 526 nm. The amounts of CuR2 and total lead can be determined by derivative ratio spectrophotometry. So, according to the obtained data for resorcylic acid, CuR2, and total lead by derivative ratio spectrophotometry, the amounts of PbR2 and PbO were determined by applying stoichiometric equations. The proposed method was successfully applied for the determination of CuR2, PbR2, and PbO in DB propellants. The results of the method were statistically compared based on t- and F-tests with those obtained by inductively coupled plasma atomic emission spectrometry. The results showed that the proposed method offers an accurate and reliable approach for the determination of these compounds in DB propellants and can be suggested as a routine method in military quality control laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Saraji, M. and Boroujeni, M.K., Anal. Bioanal. Chem., 2014, vol. 406, no. 8, p. 2027.

    Article  CAS  Google Scholar 

  2. Al-Saidi, H. and Emara, A.A., J. Saudi Chem. Soc., 2014, vol. 18, no. 6, p. 745.

    Article  Google Scholar 

  3. Aly, A.A. and Gorecki, T., Molecules, 2020, vol. 25, no. 7, p. 1719.

    Article  CAS  Google Scholar 

  4. Pena-Pereira, F., Lavilla, I., and Bendicho, C., Spectrochim. Acta, Part B, 2009, vol. 64, no. 1, p. 1.

    Article  Google Scholar 

  5. Awad, T., Moharram, H., Shaltout,O., Asker, D., and Youssef, M., Food Res. Int., 2012, vol. 48, no. 2, p. 410.

    Article  CAS  Google Scholar 

  6. Majid, I., Nayik,G. A., and Nanda, V., Cogent Food Agric., 2015, vol. 1, no. 1, p. 0.

  7. EI-Yazbi, A.F., Elashkar, N.E., Abdel-Hay, K.M., Ahmed, H.M., and Talaat, W., Anal. Sci. Technol., 2021, vol. 12, no. 7, p. 1.

    Google Scholar 

  8. Gałuszka, A., Migaszewski, Z., and Namiesnik, J., TrAC, Trends Anal. Chem., 2013. vol. 50, p. 78.

    Article  Google Scholar 

  9. Hajian, R., Shams, N., and Kaedi, I., J. Chem., 2010, vol. 7, no. 4, p. 1530.

    CAS  Google Scholar 

  10. **ao, N., Deng, J., Huang, K., Ju, S., Hu, C., and Liang, J., Spectrochim. Acta, Part A, 2014, vol. 128, p. 312.

    Article  CAS  Google Scholar 

  11. Erk, N., Spectrosc. Lett., 2001, vol. 34, no. 6, p. 745.

    Article  CAS  Google Scholar 

  12. Abdel-Hay, M.H., Gazy, A.A., Hassan, E.M., and Belal. T.S., J. Chin. Chem. Soc., 2008, vol. 55, no. 5, p. 971.

    Article  CAS  Google Scholar 

  13. Agrawal, J.P., High Energy Materials: Propellants, Explosives and Pyrotechnics, Berlin: Wiley, 2010.

    Book  Google Scholar 

  14. Varghese, T. and Krishnamurthy, V., The Chemistry and Technology of Solid Rocket Propellants (A Treatise on Solid Propellants), Delhi: Allied, 2017.

    Google Scholar 

  15. Camp, A.T. and Csanady, E.R., Doublebase ballistic modifiers, US Patent 4420350, 1980.

  16. Berteleau, G., Fonblanc, G., Longevialle, Y., and Rat, M., Compositions modifying ballistic properties and propellants containing such compositions, US Patent 5639987, 1997.

  17. Neidert, J. B. and Williams. M., Castable double base solid rocket propellant containing ballistic modifier pasted in an inert polymer, US Patent 6024810, 1998.

  18. Joshi, A. and Singh, H., J. Energ. Mater., 1992, vol. 10, nos. 4–5, p. 299.

    Article  CAS  Google Scholar 

  19. Yu, L. and You-zhi, L., Ind. Catal., 2007, vol. 15, no. 6, p. 66.

    Google Scholar 

  20. Hao, G., Liu, J., **ao, L., Gao, H. Qiao,Y., Jiang,W., Zhao, F., and Gao, H., J. Therm. Anal. Calorim., 2016, vol. 124, no. 3, p. 1367.

    Article  CAS  Google Scholar 

  21. Warren, L.R., Pulham,C.R., and Morrison, C.A., Phys. Chem. Chem. Phys., 2020, vol. 22, no. 44, p. 25502.

    Article  CAS  Google Scholar 

  22. Warren, L.R., Wang, Z., Pulham,C.R., and Morrison, C.A., Propellants, Explos., Pyrotech., 2021, vol. 46, no. 1, p. 13.

    Article  CAS  Google Scholar 

  23. Hewkin, D.J., Hicks, J., Powling, J., and Watts, H., Combust. Sci. Technol., 1971, vol. 2, nos. 5–6, p. 307.

    Article  CAS  Google Scholar 

  24. de Souza, R.M., Leocadio, L.G., and da Silveira, C.L.P., Anal. Lett., 2008, vol. 4, no. 9, p. 1615.

    Article  Google Scholar 

  25. Wuilloud, R.G., Acevedo, H. Vazquez, F., and Martinez, L.D., Anal. Lett., 2002, vol. 35, no. 10, p. 1649.

    Article  CAS  Google Scholar 

  26. Grinshtein, I.L., Vasileva, L.A., and Maksimova, Yu.V., J. Anal. Chem., 2003, vol. 58, no. 7, p. 622.

    Article  CAS  Google Scholar 

  27. Bagherian, G., Chamjangali, M.A., Evari, H.S., and Ashrafi, M., Anal. Sci. Technol., 2019, vol. 10, no. 1, p.1.

    Article  Google Scholar 

  28. Khuhawar, M., Yazdi, A.S., and Uden, P., Chromatographia, 2002, vol. 56, p. 11.

    Article  Google Scholar 

  29. Pereiro, R.I. and Díaz, C.A., Anal. Bioanal. Chem., 2002, vol. 372, no. 1, p. 74.

    Article  CAS  Google Scholar 

  30. Meng, S., **g, B., Fan, Y., Liu, Y., and Guo, Y., J. Anal. Chem., 2009, vol. 64, no. 11, p. 1108.

    Article  CAS  Google Scholar 

  31. Malik, A.K. and Rao, A.L.J., J. Anal. Chem., 2000, vol. 55, no. 8, p. 746.

    Article  CAS  Google Scholar 

  32. MIL-STD-286C w/CHANGE (Militry Standard): Propellants, Solid: Sampling, Examination and Testing, 2010.

  33. Frys, O., Cesla, P., Bajerova, P., Adam, M., and Ventura, K., Talanta, 2012, vol. 99, p. 316.

    Article  CAS  Google Scholar 

  34. Ghasemi, J., Peyman, H., and Meloun, M., J. Chem. Amp. Eng. Data, 2007, vol. 52, no. 4, p. 1171.

    Article  CAS  Google Scholar 

  35. Shivahare, G., Mathur, S., and Mathur, M., Anal. Bioanal. Chem., 1972, vol. 261, no. 2, p. 126.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Zarei.

Ethics declarations

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, A., Mardi, K. Development of Derivative Ratio Spectrophotometric Method for Simultaneous Determination of Copper β-resorcylate, Lead β-resorcylate, and Lead Oxide in Double base Propellants. J Anal Chem 77, 1247–1255 (2022). https://doi.org/10.1134/S1061934822100161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822100161

Keywords:

Navigation