Log in

Using the Internal Standard Method with a Planar Detector in the Determination of Lanthanides in Geological Samples by Neutron Activation Analysis

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The determination of eleven lanthanides in geological samples by long-living radionuclides using comparator instrumental neutron activation analysis (INAA) and the internal standard method with recording gamma radiation of induced activity by a planar semiconductor detector is described. The reference elements are Ba and Fe, whose mass fractions were determined by X-ray fluorescence, or Th, whose concentration was found by gamma spectrometry. The results of analysis of certified reference materials by comparator INAA using each of the three reference elements confirmed a possibility of the routine quantitative determination of eleven lanthanides in the III accuracy class according to OST (Branch Standard) 41-08-212-04. A possibility of using this approach for the determination of lanthanides in ores and out-of-balance samples of the Shock-Karagay deposit (Kazakhstan) and for solving geochemical problems is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hoffman, E.L., J. Geochem. Explor., 1992, vol. 44, p. 297.

    Article  CAS  Google Scholar 

  2. Bulska, E. and Ruszczyńska, A., Phys. Sci. Rev., 2017, vol. 2, no. 5. www.degruyter.com/view/journals/psr/2/ 5/article-20178002.xml. Accessed May 25, 2020.

  3. Baccolo, G., Clemenza, M., Delmonte, B., and Maffezzoli, N., J. Radioanal. Nucl. Chem., 2015, vol. 306, p. 429.

    Article  CAS  Google Scholar 

  4. Alnour, I.A., Wagiran, H., Ibrahim, N., Hamzah, S., Wee, B.S., and Elias, M.S., J. Radioanal. Nucl. Chem., 2015, vol. 303, p. 1999.

    CAS  Google Scholar 

  5. El-Taher, A. and Abdelhalim, M.A.K., J. Radioanal. Nucl. Chem., 2014, vol. 299, p. 1949.

    Article  CAS  Google Scholar 

  6. Mizera, J., Řanda, Z., and Košťák, M., J. Radioanal. Nucl. Chem., 2010, vol. 284, p. 211.

    Article  CAS  Google Scholar 

  7. Avino, P., Manigrasso, M., Capannesi, G., and Rosada, A., J. Radioanal. Nucl. Chem., 2015, vol. 303, p. 1967.

    CAS  Google Scholar 

  8. Stosch, H.-G., Phys. Sci. Rev., 2016, vol. 1, no. 8. www.degruyter.com/view/journals/psr/2016/8/article-201662.xml. Accessed May 25, 2020.

  9. Damascena, K., Amaral, R., dos Santos Junior, J., Genezini, F., Silva, A., and Rômulo, M., J. Radioanal. Nucl. Chem., 2015, vol. 304, p. 1053.

    Article  CAS  Google Scholar 

  10. Capannesi, G., Rosada, A., Manigrasso, M., and Avino, P., J. Radioanal. Nucl. Chem., 2012, vol. 291, p. 163.

    Article  CAS  Google Scholar 

  11. El-Taher, A., Appl. Radiat. Isot., 2010, vol. 68, no. 9, p. 1859.

    Article  CAS  Google Scholar 

  12. Rezaee, K., Saion, E., Wood, A., and Abdi, M., J. Radioanal. Nucl. Chem., 2010, vol. 283, p. 823.

    Article  CAS  Google Scholar 

  13. Silachyov, I., J. Radioanal. Nucl. Chem., 2016, vol. 310, p. 573.

    Article  CAS  Google Scholar 

  14. Krishnan, K., Saion, E., Mohamed Kamari, H., Yap, C.K., and Hamzah, M., J. Radioanal. Nucl. Chem., 2014, vol. 301, p. 667.

    Article  CAS  Google Scholar 

  15. Ravisankar, R., Manikandan, E., Dheenathayalu, M., Brahmaji, Rao., Seshadreesan, N.P., and Nair, K.G.M., Nucl. Instrum. Methods Phys. Res., Sect. B, 2006, vol. 251, p. 496.

    CAS  Google Scholar 

  16. Chappell, B.W. and Hergt, J.M., Chem. Geol., 1989, vol. 78, p. 151.

    Article  CAS  Google Scholar 

  17. Potts, P.J., Thorpe, O.W., Isaacs, M.C., and Wright, D.W., Chem. Geol., 1985, vol. 48, p. 145.

    Article  CAS  Google Scholar 

  18. Ebihara, M., J. Radioanal. Nucl. Chem., 1987, vol. 111, p. 385.

    Article  CAS  Google Scholar 

  19. Labrecque, J.J., Rosales, P.A., and Mejias, G., Appl. Spectrosc., 1986, vol. 40, p. 1232.

    Article  CAS  Google Scholar 

  20. Kaizer, J., Kučera, J., Kameník, J., Porubčan, V., and Povinec, P., J. Radioanal. Nucl. Chem., 2017, vol. 311, p. 2085.

    Article  CAS  Google Scholar 

  21. Mizera, J. and Řanda, Z., J. Radioanal. Nucl. Chem., 2010, vol. 284, p. 157.

    Article  CAS  Google Scholar 

  22. Araújo, M.F., Corredeira, C., and Gouveia, A., J. Radioanal. Nucl. Chem., 2007, vol. 271, p. 255.

    Article  CAS  Google Scholar 

  23. De Corte, F., J. Radioanal. Nucl. Chem., 2001, vol. 248, p. 13.

    Article  CAS  Google Scholar 

  24. Lin, X. and Henkelmann, R., Anal. Bioanal. Chem., 2004, vol. 379, p. 210.

    Article  CAS  Google Scholar 

  25. Silachyov, I.Yu., J. Anal. Chem., 2020. vol. 75, no. 7, p. 878.

    Article  CAS  Google Scholar 

  26. Knyazev, B.B., Gorlachev, I.D., and Berezovskii, D.A., Izv. Nats. Akad. Nauk Resp. Kaz., Ser. Fiz.-Mat., 2008, vol. 2, p. 73.

    Google Scholar 

  27. Weng, Z., Jowitt, S.M., Mudd, G.M., and Haque, N., Econ. Geol., 2015, vol. 110, p. 1925.

    Article  Google Scholar 

  28. Koltochnik, S.N., Sairanbaev, D.S., and Chekushina, L.V. Vestn. Nats. Yad. Tsentra Resp. Kaz., 2018, vol. 4, no. 76, p. 14.

    Google Scholar 

  29. Potts, P.J., A Handbook of Silicate Rock Analysis, Amsterdam: Springer, 1987.

    Book  Google Scholar 

  30. Pushkin, S.G. and Mikhailov, V.A., Komparatornyi neitronno-aktivatsionnyi analiz. Izuchenie atmosfernykh aerozolei (Comparator Neutron Activation Analysis: Study of Atmospheric Aerosols), Novosibirsk: Nauka, 1989.

  31. K0-News. Nuclear data subcommittee. http://www.kayzero.com/k0naa/k0naaorg/Nuclear_Data_SC/Nuclear_Data_SC.html. Accessed May 25, 2020.

  32. Zaitsev, E.I., Sotskov, Yu.P., and Reznikov, R.S., Neitronno-aktivatsionnyi analiz gornykh porod na redkie elementy (Neutron Activation Analysis of Rocks for Trace Elements), Moscow: Nedra, 1978.

  33. Shirai, N., Hidaka, Y., Yamaguchi, A., Sekimoto, S., Ebihara, M., and Kojima, H., J. Radioanal. Nucl. Chem., 2015, vol. 303, p. 1375.

    Article  CAS  Google Scholar 

  34. Hubbell, J.H. and Seltzer, S.M., X-ray mass attenuation coefficients. NIST standard reference database 126. www.nist.gov/pml/x-ray-mass-attenuation-coefficients. Accessed May 25, 2020.

  35. Simonits, A., De Corte, F., and Hoste, J., J. Radioanal. Nucl. Chem., 1976, vol. 31, p. 467.

    Article  CAS  Google Scholar 

  36. OST (Industry Standard) 41-08-212-04: Analytical Quality Management. Error Rates in Determining the Chemical Composition of Mineral Raw Materials and Classification of Laboratory Analysis Techniques according to the Accuracy of Results., Moscow: VIMS, 2004.

  37. GOST (State Standard) R 50779.60-2017 (ISO 13528:2015): Statistical Methods. Use in Proficiency Testing by Interlaboratory Comparison, Moscow: Standartinform, 2017; ISO 13528:2015: Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparisons, Geneve, 2015.

  38. Omirserikov, M.Sh., Yusupova, U.Yu., Togizov, K.S., Baisalova, A.O., and Dyusenaeva, A.K., Izv. Nats. Akad. Nauk Resp. Kaz., Ser. Geol., 2015, vol. 3, p. 35.

    Google Scholar 

Download references

Funding

This work was performed within the Program of the Target Support of the Ministry of Education and Science of the Republic of Kazakhstan (BR05236400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Silachyov.

Additional information

Translated by E. Rykova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silachyov, I.Y. Using the Internal Standard Method with a Planar Detector in the Determination of Lanthanides in Geological Samples by Neutron Activation Analysis. J Anal Chem 75, 1415–1423 (2020). https://doi.org/10.1134/S1061934820110118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820110118

Keywords:

Navigation