Log in

Application of a Chiral Stationary Phase Based on 3,4,9,10-Perylenetetracarboxylic Acid to the Separation of Enantiomers under the Conditions of Gas and Liquid Chromatography

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A chiral stationary phase is proposed on the basis of 3,4,9,10-perylenetetracarboxylic acid (3,4,9,10-perylentetracarbonacid, PTCA). The PTCA molecule itself is not chiral; however, it can form chiral supramolecular structures. Symmetry breaking during the self-assembly of PTCA supramolecular structures was carried out similarly to the Viedma ripening process. The obtained stationary phases with PTCA multilayers on an inert solid support and C18 silica were used to separate racemates in gas and liquid chromatography, respectively. It was found that the proposed stationary phases exhibit enantioselectivity with respect to pairs of enantiomers bearing a hydroxyl group at an asymmetric carbon atom. Enantiomers of butanol-2, pentanol-2, and 1-methoxy-propanol-2 were separated by gas chromatography. The separation of menthols was achieved in the normal-phase HPLC mode. It was shown that the separation of the last named compounds is possible up to a concentration of 0.04 mg/mL inclusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Schurig, V., J. Chromatogr. A, 2001, vol. 906, p. 275.

    Article  CAS  Google Scholar 

  2. Venema, A., Henderiks, H., and Geest, R.V., J. High Resolut. Chromatogr., 1991, vol. 14, p. 676.

    Article  CAS  Google Scholar 

  3. **e, S.M. and Yuan, L.M., J. Sep. Sci., 2017, vol. 40, no. 1, p. 124.

    Article  CAS  Google Scholar 

  4. Adly, F.G., Antwi, N.Y., and Ghanem, A., Chirality, 2016, vol. 28, no. 2, p. 97.

    Article  CAS  Google Scholar 

  5. Shapovalova, E.N., Fedorova, I.A., Priporova, A.A., Anan’eva, I.A., and Shpigun, O.A., Analitika Kontrol’, 2016, vol. 20, no. 2, p. 168.

    Google Scholar 

  6. Prokhorova, A.F., Kuznetsov, M.A., Shapovalova, E.N., Staroverov, S.M., and Shpigun, O.A., Moscow Univ. Chem. Bull. (Engl. Transl.), 2010, vol. 65, no. 5, p. 295.

  7. Lebedeva, M.V., Prokhorova, A.F., Shapovalova, E.N., and Shpigun, O.A., Moscow Univ. Chem. Bull. (Engl. Transl.), 2013, vol. 68, no. 5, p. 215.

  8. Ya, H., Two-Dimensional (2D) Functional Molecular Networks, Blunt, M., Ed., London: Univ. College London, 2016.

    Google Scholar 

  9. Meijer, E.W. and Palmans, A.R.A., Angew. Chem., Int. Ed., 2007, vol. 46, p. 8948.

    Article  Google Scholar 

  10. Fujiki, M., Symmetry, 2014, vol. 6, p. 677.

    Article  CAS  Google Scholar 

  11. Bruin, A.G.D., Barbour, M.E., and Briscoe, W.H., Polym. Int., 2014, vol. 63, p. 165.

    Article  Google Scholar 

  12. Zhao, L., Liu, M., Li, S., Li, A., An, H., Ye, H., and Zhang, Y.J., J. Mater. Chem. C, 2015, vol. 3, p. 3650.

    Article  CAS  Google Scholar 

  13. Godlewski, S. and Szymonski, M., Appl. Surf. Sci., 2011, vol. 258, p. 1300.

    Article  CAS  Google Scholar 

  14. Mannsfeld, S., Toerker, M., Scgmitz-Hubsch, T., Sellam, F., Fritz, T., and Leo, K., Org. Electron., 2001, vol. 2, p. 121.

    Article  CAS  Google Scholar 

  15. Zhao, Y. and Wang, J., J. Phys. Chem. C, 2017, vol. 121, no. 8, p. 4488.

    Article  CAS  Google Scholar 

  16. Sun, X., Jonkman, H.T., and Silly, F., Nanotecnology, 2010, vol. 21, p. 165602.

    Article  Google Scholar 

  17. Gus’kov, V.Yu., Sukhareva, D.A., Arslanova, I.V., and Musabirov, D.E., J. Anal. Chem., 2017, vol. 72, no. 10, p. 1089.

    Article  Google Scholar 

  18. Nafikova, A.R., Allayarova, D.A., and Gus’kov, V.Yu., J. Anal. Chem., 2019, vol. 74, no. 6, p. 565.

    Article  CAS  Google Scholar 

  19. Gus’kov, V.Y., Sukhareva, D.A., Gainullina, Y.Y., Hamitov, E.M., Galkin, Y.G., and Maistrenko, V.N., Supramol. Chem., 2018, vol. 30, no. 11, p. 940.

    Article  Google Scholar 

  20. Viedma, C., Phys. Rev. Lett., 2005, vol. 94, 065504.

    Article  Google Scholar 

  21. Davankov, V.A., Symmetry, 2018, vol. 10, p. 749.

    Article  CAS  Google Scholar 

  22. Sogutoglu, L.-C., Steendam, R.R.E., Meekes, H., Vlieg, E., and Rutjes, F.P.J.T., Chem. Soc. Rev., 2015, vol. 44, p. 6723.

    Article  Google Scholar 

  23. Gus’kov, V.Yu. and Maistrenko, V.N., J. Anal. Chem., 2018, vol. 73, no. 10, p. 937.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. B. I. Kutepov for the IR spectra of 3,4,9,10-perylenetetracarboxylic acid and for Prof. I. A. Massalimov for the analysis of particle sizes of the modifier.

Funding

This work was supported by the Russian Science Foundation, project no. 17-73-10181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Gus’kov.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gus’kov, V.Y., Gainullina, Y.Y., Uteeva, Z.D. et al. Application of a Chiral Stationary Phase Based on 3,4,9,10-Perylenetetracarboxylic Acid to the Separation of Enantiomers under the Conditions of Gas and Liquid Chromatography. J Anal Chem 75, 778–782 (2020). https://doi.org/10.1134/S1061934820060106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820060106

Keywords:

Navigation