Log in

The Experimental Study of Evaporation of Water–Alcohol Solution Droplets

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Experimental data have been presented on the evaporation of water–alcohol solution droplets with different concentrations. The droplets have been suspended by a thread and applied onto a planar surface. The dynamics of variations in the geometric parameters of the evaporating water–alcohol solution droplets has been studied with the use of high-speed microphotography. Infrared thermography has been employed to confirm the three-stage variation in the surface temperature of the evaporating droplets, namely, an initial dramatic decrease in the temperature, the stage of a constant temperature, and its smooth increase up to the ambient air temperature. The experimental data have shown an essential influence of the solution concentration on the droplet evaporation process. The higher the ethanol concentration in a droplet, the closer the character of variations in the surface temperature and geometric parameters of the droplet to the variations in the same parameters of an alcohol droplet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Chandra, S., Di Marzo, M., Qiao, Y.M., and Tartarini, P., Fire Saf. J., 1996, vol. 27, p. 141.

    Article  CAS  Google Scholar 

  2. Sefiane, K., Tadrist, L., and Douglas, M., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 4527.

    Article  CAS  Google Scholar 

  3. Cheng, A.K.H., Soolaman, D.M., and Yu, H.Z., J. Phys. Chem. B, 2006, vol. 110, p. 11267.

    Article  CAS  PubMed  Google Scholar 

  4. Sefiane, K., David, S., and Shanahan, M.E.R., J. Phys. Chem. B, 2008, vol. 112, p. 11317.

    Article  CAS  PubMed  Google Scholar 

  5. Shi, L., Shen, P., Zhang, D., Lin, Q., and Jiang, Q., Surf. Interface Anal., 2009, vol. 41, p. 951.

    Article  CAS  Google Scholar 

  6. Saverchenko, V.I., Fisenko, S.P., and Khodyko, Yu.A., Colloid J., 2015, vol. 77, p. 71.

    Article  CAS  Google Scholar 

  7. Kuznetsov, G.V., Feoktistov, D.V., and Orlova, E.G., Teplofiz. Aeromekh., 2016, vol. 23, p. 17.

    Google Scholar 

  8. Kuchma, A.E., Esipova, N.E., Mikheev, A.A., Shchekin, A.K., and Itskov, S.V., Colloid J., 2017, vol. 79, p. 779.

    Article  CAS  Google Scholar 

  9. Liu, C., Bonaccurso, E., and Butt, H.J., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 7150.

    Article  CAS  PubMed  Google Scholar 

  10. Oztürk, T. and Erbil, H.Y., Colloids Surf. A, 2018, vol. 553, p. 327.

    Article  CAS  Google Scholar 

  11. David, S., Sefiane, K., and Tadrist, L., Colloids Surf. A, 2007, vol. 298, p. 108.

    Article  CAS  Google Scholar 

  12. Dunn, G.J., Wilson, S.K., Duffy, B.R., David, S., and Sefiane, K., J. Fluid Mech., 2009, vol. 623, p. 329.

    Article  CAS  Google Scholar 

  13. Bazargan, V. and Stoeber, B., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2016, vol. 94, p. 033103.

    Article  CAS  Google Scholar 

  14. Borodulin, V.Y., Letushko, V.N., Nizovtsev, M.I., and Sterlyagov, A.N., MATEC Web of Conferences, 2017, vol. 115, p. 08005.

  15. Han, K., Song, G., Ma, X., and Yang, B., Appl. Therm. Eng., 2016, vol. 101, p. 568.

    Article  CAS  Google Scholar 

  16. Terekhov, V.I. and Shishkin, N.E., Polzunovsk. Vestn., 2010, no. 1, p. 55.

  17. Sefiane, K., Moffat, J.R., Matar, O.K., and Craster, R.V., Appl. Phys. Lett., 2008, vol. 93, p. 074103.

    Article  CAS  Google Scholar 

  18. Hamamoto, Y., Christy, J.R.E., and Sefiane, K., J. Therm. Sci. Technol., 2012, vol. 7, p. 425.

    Article  CAS  Google Scholar 

  19. Nakoryakov, V.E., Misyura, S.Y., and Elistratov, L., J. Eng. Thermophys., 2013, vol. 22, p. 1.

    Article  CAS  Google Scholar 

  20. Bochkareva, E.M., Terekhov, V.V., Nazarov, A.D., and Miskiv, N.B., J. Phys.: Conf. Ser., 2017, vol. 891, p. 012010.

    Google Scholar 

  21. Brutin, D., Sobac, B., Rigollet, F., and Le Niliot, C., Exp. Therm. Fluid Sci., 2011, vol. 35, p. 521.

    Article  CAS  Google Scholar 

  22. Fedorets, A.A., Dombrovsky, L.A., and Medvedev, D.N., JETP Lett., 2015, vol. 102, p. 452.

    Article  CAS  Google Scholar 

  23. Borodulin, V.Y., Letushko, V.N., Nizovtsev, M.I., and Sterlyagov, A.N., Int. J. Heat Mass Transfer, 2017, vol. 109, p. 609.

    Article  CAS  Google Scholar 

  24. Kuchma, A.E., Shchekin, A.K., Esipova, N.E., Tat’yanenko, D.V., Itskov, S.V., and Savin, A.V., Colloid J., 2017, vol. 79, p. 353.

    Article  CAS  Google Scholar 

  25. Sterlyagov, A.N., Letushko, V.N., Nizovtsev, M.I., and Borodulin, V.Yu., J. Phys.: Conf. Ser., 2018, vol. 1105, p. 012068.

    Google Scholar 

  26. Zolotarev, V.I. and Demin, V.A., Opt. Spektrosk., 1977, vol. 43, p. 271.

    CAS  Google Scholar 

  27. Brutin, D., Zhu, Z.Q., Rahli, O., **e, J.C., Liu, Q.S., and Tadrist, L., Microgravity Sci. Technol., 2010, vol. 22, p. 387.

    Article  CAS  Google Scholar 

  28. Lebedev-Stepanov, P.V., Vvedenie v samosborku ansamblei nanochastits (An Introduction to Self-Assembly of Nanoparticle Ensembles), Moscow: NIYaU MIFI, 2012.

  29. Fuks, N.A., Rost i isparenie kapel’ v gazoobraznoi srede (Droplet Growth and Evaporation in Gaseous Medium), Moscow: Akad. Nauk SSSR, 1958.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Sterlyagov.

Additional information

Translated by L. Tkachenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodulin, V.Y., Letushko, V.N., Nizovtsev, M.I. et al. The Experimental Study of Evaporation of Water–Alcohol Solution Droplets. Colloid J 81, 219–225 (2019). https://doi.org/10.1134/S1061933X19030049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X19030049

Navigation