Log in

Hybridization of a Linear Viscoelastic Constitutive Equation and a Nonlinear Maxwell-Type Viscoelastoplastic Model, and Analysis of Poisson’s Ratio Evolution Scenarios under Creep

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

A generalization of a physically nonlinear Maxwell-type viscoelastoplastic constitutive equation with four material functions is formulated, whose general properties and range of applicability were discussed in a series of our previous studies. In order to expand the range of rheological effects and materials that can be described by the equation, it is proposed to add a third strain component expressed by a linear integral Boltzmann–Volterra operator with arbitrary functions of shear and volumetric creep. For generality and for the convenience of using the model, as well as for fitting the model to various materials and simulated effects, a weight factor (degree of nonlinearity) is introduced into the constitutive equation, which allows combining the original nonlinear equation and the linear viscoelastic operator in arbitrary proportions to control the degree of different effects modeled. Equations are derived for families of creep curves (volumetric, shear, longitudinal, and transverse) generated by the proposed constitutive equation with six arbitrary material functions, and an expression is obtained for the Poisson ratio as a function of time. Their general properties and dependence on loading parameters and characteristics of all material functions are studied analytically and compared with the properties of similar relations produced by two combined constitutive equations separately. New qualitative effects are identified which can be described by the new constitutive equation in comparison with the original ones, and it is verified that the generalization eliminates some shortcomings of the Maxwell-type viscoelastoplastic constitutive equation, but retains its valuable features. It is confirmed that the proposed constitutive equation can model sign alternation, monotonic and nonmonotonic changes in transverse strain and Poisson’s ratio under constant stress, and their stabilization over time. Generally accurate estimates are obtained for the variation range, monotonicity and nonmonotonicity conditions of Poisson’s ratio, and its negativity criterion over a certain time interval. It is proven that neglecting volumetric creep (the postulate of bulk elasticity), which simplifies the constitutive equation, greatly limits the range of possible evolution scenarios of Poisson’s ratio in time: it increases and cannot have extremum and inflection points. The analysis shows that the proposed constitutive equation provides ample opportunities for describing various properties of creep and recovery curves of materials and various Poisson’s ratio evolution scenarios during creep. It can significantly expand the range of described rheological effects, the applicability of the Maxwell-type viscoelastoplastic equation, and deserves further research and application in modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Khokhlov, A.V., Two-Sided Estimates for the Relaxation Function of the Linear Theory of Heredity via the Relaxation Curves during the Ramp-Deformation and the Methodology of Identification, Mech. Solids, 2018, vol. 53, pp. 307–328. https://doi.org/10.3103/S0025654418070105

    Article  ADS  Google Scholar 

  2. Khokhlov, A.V., Analysis of Properties of Ramp Stress Relaxation Curves Produced by the Rabotnov Non-Linear Hereditary Theory, Mech. Compos. Mater., 2018, vol. 54, no. 4, pp. 473–486. https://doi.org/10.1007/s11029-018-9757-1

    Article  ADS  Google Scholar 

  3. Khokhlov, A.V., Properties of the Set of Strain Diagrams Produced by Rabotnov Nonlinear Equation for Rheonomous Materials, Mech. Solids, 2019, vol. 54, pp. 384–399. https://doi.org/10.3103/S002565441902002X

    Article  ADS  Google Scholar 

  4. Khokhlov, A.V., Long-Term Strength Curves Generated by the Nonlinear Maxwell-Type Model for Viscoelastoplastic Materials and the Linear Damage Rule under Step Loading, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2016, vol. 20, no. 3, pp. 524–543. http://dx.doi.org/10.14498/vsgtu1512

    Article  Google Scholar 

  5. Khokhlov, A.V., The Nonlinear Maxwell-Type Model for Viscoelastoplastic Materials: Simulation of Temperature Influence on Creep, Relaxation and Strain–Stress Curves, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2017, vol. 21, no. 1, pp. 160–179. https://doi.org/10.14498/vsgtu1524

    Article  Google Scholar 

  6. Khokhlov, A.V., A Nonlinear Maxwell-Type Model for Rheonomic Materials: Stability under Symmetric Cyclic Loadings, Moscow Univ. Mech. Bull., 2018, vol. 73, no. 2, pp. 39–42. https://doi.org/10.3103/S0027133018020036

    Article  Google Scholar 

  7. Khokhlov, A.V., Applicability Indicators and Identification Techniques for a Nonlinear Maxwell-Type Elasto-Viscoplastic Model Using Multi-Step Creep Curves, Vestn. MGTU Baumana. Ser. Estestv. Nauki, 2018, no. 6, pp. 92–112. https://doi.org/10.18698/1812-3368-2018-6-92-112

    Article  Google Scholar 

  8. Khokhlov, А.V., Applicability Indicators and Identification Techniques for a Nonlinear Maxwell-Type Elastoviscoplastic Model Using Loading–Unloading Curves, Mech. Compos. Mater., 2019, vol. 55, no. 2, pp. 195–210. https://doi.org/10.1007/s11029-019-09809-w

    Article  ADS  Google Scholar 

  9. Khokhlov, A.V., Possibility to Describe the Alternating and Non-Monotonic Time Dependence of Poisson’s Ratio during Creep Using a Nonlinear Maxwell-Type Viscoelastoplasticity Model, Russ. Metallurgy (Metally), 2019, no. 10, pp. 956–963. https://doi.org/10.1134/S0036029519100136

    Article  ADS  Google Scholar 

  10. Khokhlov, A.V., Shaporev, A.V., and Stolyarov, O.N., Loading–Unloading–Recovery Curves for Polyester Yarns and Identification of the Nonlinear Maxwell-Type Viscoelastoplastic Model, Mech. Compos. Mater., 2023, vol. 59, no. 1, pp. 129–146. https://doi.org/10.1007/s11029-023-10086-x

    Article  ADS  Google Scholar 

  11. Rabotnov, Yu.N., Creep Problems in Structural Members, Amsterdam–London: North-Holland Pub. Co., 1969.

  12. Bugakov, I.I., Creep of Polymer Materials, Moscow: Nauka, 1973.

  13. Malinin, N.N., Creep Calculations for Elements of Mechanical Engineering Structures, Moscow: Mashinostroeniye, 1981.

  14. Gokhfeld, D.A. and Sadakov, O.S., Plasticity and Creep of Structural Members under Repeated Loading, Moscow: Mashinostroeniye, 1984.

  15. Nikitenko, A.F., Creep and Long-Term Strength of Metallic Materials, Novosibirsk: NGASU, 1997.

  16. Betten, J., Creep Mechanics, Berlin: Springer-Verlag, 2008. https://doi.org/10.1007/b138749

  17. Lokoshchenko, A.M., Creep and Long-Term Strength of Metals, Boca Raton, FL: CRC Press, Taylor & Francis Group, 2018.

  18. Lakes, R.S., Viscoelastic Materials, Cambridge: Cambridge Univ. Press, 2009. https://doi.org/10.1017/CBO9780511626722

  19. Bergstrom, J.S., Mechanics of Solid Polymers. Theory and Computational Modeling, William Andrew, Elsevier, 2015. https://doi.org/10.1016/c2013-0-15493-1

  20. Vinogradov, G.V. and Malkin, A.Ya., Rheology of Polymers, Moscow: Khimiya, 1977.

  21. Larson, R.G., Constitutive Equations for Polymer Melts and Solutions, Boston: Butterworth, 1988. https://doi.org/10.1016/c2013-0-04284-3

  22. Gupta, R.K., Polymer and Composite Rheology, New York: Marcel Dekker, 2000.

  23. Malkin, A.Y. and Isayev, A.I., Rheology: Conceptions, Methods, Applications, Toronto: Chem. Tec. Publ., 2012.

  24. Brinson, H.F. and Brinson, L.C., Polymer Engineering Science and Viscoelasticity, Springer, 2008. https://doi.org/10.1007/978-0-387-73861-1

  25. Kalinnikov, A.E. and Vakhrushev, A.V., Creep of Materials of Different Tensile and Compressive Strengths under Variable Loads, Mech. Comp. Mater., 1982, vol. 18, pp. 267–272.

    Article  Google Scholar 

  26. Fatemi, A. and Yang, L., Cumulative Fatigue Damage and Life Prediction Theories: A Survey of The State of the Art for Homogeneous Materials, Int. J. Fatigue, 1998, vol. 20, no. 1, pp. 9–34.

    Article  Google Scholar 

  27. Launay, A., Maitournam, M.H., Marco, Y., Raoult, I., and Szmytka, F., Cyclic Behaviour of Short Glass Fibre Reinforced Polyamide: Experimental Study and Constitutive Equations, Int. J. Plasticity, 2011, vol. 27, pp. 1267–1293. https://doi.org/10.1016/j.ijplas.2011.02.005

    Article  Google Scholar 

  28. Darabi, M.K., Al-Rub, R.K.А., Masad, E.A., Huang, C.-W., and Little, D.N., A Modified Viscoplastic Model to Predict the Permanent Deformation of Asphaltic Materials under Cyclic-Compression Loading at High Temperatures, Int. J. Plasticity, 2012, vol. 35, pp. 100–134.

    Article  Google Scholar 

  29. Takagi, H., Dao, M., and Fujiwara, M., Prediction of the Constitutive Equation for Uniaxial Creep of a Power-Law Material through Instrumented Microindentation Testing and Modeling, Mater. Trans., 2014, vol. 55, no. 2, pp. 275–284.

    Article  Google Scholar 

  30. Chinh, N.Q. and Szommer, P., Mathematical Description of Indentation Creep and Its Application for the Determination of Strain Rate Sensitivity, Mater. Sci. Eng. A, 2014, vol. 611, pp. 333–336.

    Article  Google Scholar 

  31. Petukhov, D.S. and Keller, I.E., Dual Plane Problems for Cree** Flow of Power-Law Incompressible Medium, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2016, vol. 20, no. 3, pp. 496–507.

    Article  Google Scholar 

  32. Kaibyshev, O.A., Superplasticity of Commercial Alloys, Moscow: Metallurgiya, 1984.

  33. Nieh, T.G., Wadsworth, J., and Sherby, O.D., Superplasticity in Metals and Ceramics, Cambridge: Cambridge Univ. Press, 1997. https://doi.org/10.1017/CBO9780511525230

  34. Padmanabhan, K.A., Vasin, R.A., and Enikeev, F.U., Superplastic Flow: Phenomenology and Mechanics, Berlin: Springer-Verlag, 2001. https://doi.org/10.1007/978-3-662-04367-7

  35. Segal, V.M., Beyerlein, I.J., Tome, C.N., Chuvil’deev, V.N., and Kopylov, V.I., Fundamentals and Engineering of Severe Plastic Deformation, New York: Nova Science Pub. Inc., 2010.

  36. Zhilayev, A.P. and Pshenichnyuk, A.I., Superplasticity and Grain Boundaries in Ultrafine-Grained Materials, Cambridge: Cambridge Int. Sci. Publ., 2010.

  37. Cao, Y., Determination of the Creep Exponent of a Power-Law Creep Solid Using Indentation Tests, Mech. Time-Depend. Mater., 2007, vol. 11, pp. 159–172.

    Article  ADS  Google Scholar 

  38. Megahed, M., Ponter, A.R.S., and Morrison, C.J., An Experimental and Theoretical Investigation into the Creep Properties of a Simple Structure of 316 Stainless Steel, Int. J. Mech. Sci., 1984, vol. 26, no. 3, pp. 149–164.

    Article  Google Scholar 

  39. Enikeev, F.U., Experimental Assessment of the Strain Rate Sensitivity of a Superplastic Material with a Highly Inhomogeneous Stress–Strain State, Zavodsk. Laborator. Diagnostika Mater., 2007, vol. 73, no. 10, pp. 44–50.

    Google Scholar 

  40. Mochugovskiy, A.G., Mosleh, A.O., Kotov, A.D., Khokhlov, A.V., Kaplanskaya, L.Y., and Mikhaylovskaya, A.V., Microstructure Evolution, Constitutive Modelling, and Superplastic Forming of Experimental 6XXX-Type Alloys Processed with Different Thermomechanical Treatments, Materials, 2023, vol. 16, no. 1-445, pp. 1–18. https://doi.org/10.3390/ma16010445

    Article  Google Scholar 

  41. Eglit, M.E., Yakubenko, A.E., and Zaiko, Yu.S., Mathematical Modeling of Slope Flows of Non-Newtonian Media, Trudy Matem. Inst. Steklova, 2018, vol. 300, pp. 229–239.

    Article  Google Scholar 

  42. Radchenko, V.P. and Shapievskii, D.V., Mathematical Model of Creep for a Microinhomogeneous Nonlinearly Elastic Material, J. Appl. Mech. Tech. Phys., 2008, vol. 49, no. 3, pp. 478–483. https://doi.org/10.1007/s10808-008-0064-9

    Article  ADS  Google Scholar 

  43. Naumenko, K., Altenbach, H., and Gorash, Y., Creep Analysis with a Stress Range Dependent Constitutive Model, Arch. Appl. Mech., 2009, vol. 79, pp. 619–630. https://doi.org/10.1007/s00419-008-0287-5

    Article  ADS  Google Scholar 

  44. Lu, L.Y., Lin, G.L., and Shih, M.H., An Experimental Study on a Generalized Maxwell Model for Nonlinear Viscoelastic Dampers Used in Seismic Isolation, Eng. Struct., 2012, vol. 34, no. 1, pp. 111–123.

    Article  Google Scholar 

  45. Monsia, M.D., A Simplified Nonlinear Generalized Maxwell Model for Predicting the Time Dependent Behavior of Viscoelastic Materials, World J. Mech., 2011, no. 1, pp. 158–167. https://doi.org/10.4236/wjm.2011.13021

    Article  ADS  Google Scholar 

  46. Stolin, A.M. and Khokhlov, A.V., Nonlinear Model of Shear Flow of Thixotropic Viscoelastoplastic Continua Taking into Account the Evolution of the Structure and Its Analysis, Moscow Univ. Mech. Bull., 2022, vol. 77, no. 5, pp. 127–135. https://doi.org/10.3103/S0027133022050065

    Article  Google Scholar 

  47. Khokhlov, A.V. and Gulin, V.V., Analysis of the Properties of a Nonlinear Model for Shear Flow of Thixotropic Media Taking into Account the Mutual Influence of Structural Evolution and Deformation, Phys. Mesomech., 2023, vol. 26, no. 6, pp. 621–642. https://doi.org/10.1134/S1029959923060036

    Article  Google Scholar 

  48. Gorodtsov, V.A. and Leonov, A.I., On the Kinematics, Nonequilibrium Thermodynamics, and Rheological Relationships in the Nonlinear Theory of Viscoelasticity, J. Appl. Math. Mech., 1968, vol. 32, no. 1, pp. 62–84. https://doi.org/10.1016/0021-8928(68)90148-2

    Article  Google Scholar 

  49. Leonov, A.I., Lipkina, E.Ch., Paskhin, E.D., and Prokunin, A.N., Theoretical and Experimental Investigations of Shearing in Elastic Polymer Liquids, Rheol. Acta., 1976, vol. 15, no. 7/8, pp. 411–426. https://doi.org/10.1007/BF01574496

    Article  Google Scholar 

  50. Palmov, V.A., Rheological Models in Nonlinear Solid Mechanics, Uspekhi Mekh., 1980, vol. 3, no. 3, pp. 75–115.

    MathSciNet  Google Scholar 

  51. Prokunin, A.N., On the Non-Linear Maxwell-Type Defining Equations for Describing the Motions of Polymer Liquids, J. Appl. Math. Mech., 1984, vol. 48, no. 6, pp. 699–706. https://doi.org/10.1016/0021-8928(84)90037-6

    Article  MathSciNet  Google Scholar 

  52. Leonov, A.I. and Prokunin, A.N., Non-Linear Phenomena in Flows of Viscoelastic Polymer Fluids, London: Chapman and Hall, 1994. https://doi.org/10.1007/978-94-011-1258-1

  53. Leonov, A.I., Constitutive Equations for Viscoelastic Liquids: Formulation, Analysis and Comparison with Data, Rheology Series, 1999, vol. 8, pp. 519–575. https://doi.org/10.1016/S0169-3107(99)80040-9

    Article  Google Scholar 

  54. Khokhlov, A.V., Analysis of Creep Curves Produced by the Linear Viscoelasticity Theory under Cyclic Stepwise Loadings, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2017, vol. 21, no. 2, pp. 326–361. https://doi.org/10.14498/vsgtu1533

    Article  Google Scholar 

  55. Khokhlov, A.V., Applicability Indicators and Identification Technique for a Nonlinear Maxwell-Type Elastoviscoplastic Model Using Repeated Creep Recovery Tests, Problem. Prochnost. Polzuchest., 2021, vol. 83, no. 4, pp. 443–450.

    Google Scholar 

  56. Moskvitin, V.V., Resistance of Viscoelastic Materials (As Applied to Solid Propellant Rocket Motor Charges), Moscow: Nauka, 1972.

  57. Ainbinder, S.B., Tyunina, E.L., and Tsirule, K.I., Properties of Polymers in Various Stress States, Moscow: Khimiya, 1981.

  58. Gol’dman, A.Ya., Bulk Deformation of Plastics, Leningrad: Mashinostroeniye, 1984.

  59. Gol’dman, A.Ya., Prediction of the Deformation Properties of Polymeric and Composite Materials, Washington, DC: American Chemical Society, 1994.

  60. Mileiko, S.T., Metal and Ceramic Based Composites, Amsterdam: Elsevier, 1997.

  61. Moshev, V.V., Svistkov, A.L., Garishin, O.K., et al., Structural Mechanisms of Formation of Mechanical Properties of Granular Polymer Composites, Yekaterinburg: Izd-vo UrO RAN, 1997.

  62. Bazhenov, S.L., Berlin, A.A., Kulkov, A.A., and Oshmyan, V.G., Polymer Composites: Strength and Technology, Moscow: Izd-vo Intellekt, 2009.

  63. Brekhova, V.D., Investigation of the Poisson’s Ratio of Certain Crystalline Polymers under a Constant Compressive Load, Polymer Mech., 1965, vol. 1, pp. 23–24. https://doi.org/10.1007/BF00858886

    Article  Google Scholar 

  64. Dzene, I.Y. and Putans, A.V., Poisson’s Ratio of Polyethylene in One-Dimensional Creep, Polymer Mech., 1967, vol. 3, pp. 626–627. https://doi.org/10.1007/BF00859258

    Article  ADS  Google Scholar 

  65. Dzene, I.Y., Kregers, A.F., and Vilks, U.K., Characteristic Features of the Deformation Process on Creep and Secondary Creep of Polymers under Conditions of Monaxial Tensioning. Part I, Polymer Mech., 1974, vol. 10, pp. 337–342. https://doi.org/10.1007/BF00865585

    Article  ADS  Google Scholar 

  66. Shcherbak, V.V. and Gol’dman, A.Ya., Volume Changes in Particle-Reinforced Composites in Creep Test Conditions, Mekh. Kompozit. Mater., 1982, no. 3, pp. 549–552.

    Google Scholar 

  67. Kalinnikov, A.E. and Vakhrushev, A.V., The Ratio of Transverse to Longitudinal Strain under Uniaxial Creep of Materials with Different Strengths, Mekh. Kompozit. Mater., 1985, no. 2, pp. 351–354.

    Google Scholar 

  68. Knauss, W.G. and Emri, I., Volume Change and the Nonlinearly Thermoviscoelastic Constitution of Polymers, Polym. Eng. Sci., 1987, vol. 27, pp. 86–100.

    Article  Google Scholar 

  69. Tschoegl, N.W., Time Dependence in Material Properties: An Overview, Mech. Time-Depend. Mater., 1997, vol. 1, no. 1, pp. 3–31. https://doi.org/10.1023/A:1009748023394

    Article  ADS  Google Scholar 

  70. Ozupek, S. and Becker, E.B., Constitutive Equations for Solid Propellants, J. Eng. Mater. Technol., 1997, vol. 119, no. 2, pp. 125–132. https://doi.org/10.1115/1.2805983

  71. Hilton, Н.Н., Implications and Constraints of Time-Independent Poisson’s Ratios in Linear Isotropic and Anisotropic Viscoelasticity, J. Elast., 2001, vol. 63, pp. 221–251. https://doi.org/10.1023/A:1014457613863

    Article  Google Scholar 

  72. Tschoegl, N.W., Knauss, W.G., and Emri, I., Poisson’s Ratio in Linear Viscoelasticity—A Critical Review, Mech. Time-Depend. Mater., 2002, vol. 6, no. 1, pp. 3–51. https://doi.org/10.1023/A:1014411503170

    Article  ADS  Google Scholar 

  73. Arzoumanidis, G.A. and Liechti, K.M., Linear Viscoelastic Property Measurement and Its Significance for Some Nonlinear Viscoelasticity Models, Mech. Time-Depend. Mater., 2003, vol. 7, no. 3, pp. 209–250. https://doi.org/10.1023/B:MTDM.0000007357.18801.13

    Article  ADS  Google Scholar 

  74. Lomakin, E.V., Mechanics of Media with Stress-State Dependent Properties, Phys. Mesomech., 2007, vol. 10, no. 5–6, pp. 255–265.

    Article  Google Scholar 

  75. Savinykh, A.S., Garkushin, G.V., Razorenov, S.V., and Kanel, G.I., Longitudinal and Bulk Compressibility of Soda-Lime Glass at Pressures to 10 GPa, Tech. Phys., 2007, vol. 52, pp. 328–332. https://doi.org/10.1134/S1063784207030073

    Article  Google Scholar 

  76. Pandini, S. and Pegoretti, A., Time, Temperature, and Strain Effects on Viscoelastic Poisson’s Ratio of Epoxy Resins, Polym. Eng. Sci., 2008, vol. 48, no. 7, pp. 1434–1441. https://doi.org/10.1002/pen.21060

    Article  Google Scholar 

  77. Bykov, D.L. and Peleshko, V.A., Constitutive Relations for Strain and Failure of Filled Polymer Materials in Dominant Axial Tension Processes under Various Barothermal Conditions, Mech. Solids, 2008, vol. 43. no. 6, pp. 870–891. https://doi.org/10.3103/S0025654408060058

    Article  ADS  Google Scholar 

  78. Shekhar, H. and Sahasrabudhe, A.D., Longitudinal Strain Dependent Variation of Poisson’s Ratio for HTPB Based Solid Rocket Propellants in Uni-Axial Tensile Testing, Propellants Explosives Pyrotech., 2011, vol. 36, no. 6, pp. 558–563. https://doi.org/10.1002/prep.200900079

    Article  Google Scholar 

  79. Tscharnuter, D., Jerabek, M., Major, Z., and Lang, R.W., Time-Dependent Poisson’s Ratio of Polypropylene Compounds for Various Strain Histories, Mech. Time-Dependent Mater., 2011, vol. 15, no. 1, pp. 15–28. https://doi.org/10.1007/s11043-010-9121-x

    Article  ADS  Google Scholar 

  80. Grassia, L., D’Amore, A., and Simon, S.L., On the Viscoelastic Poisson’s Ratio in Amorphous Polymers, J. Rheology, 2010, vol. 54, no. 5, pp. 1009–1022. https://doi.org/10.1122/1.3473811

    Article  ADS  Google Scholar 

  81. Cui, H.R., Tang, G.J., and Shen, Z.B., Study on Viscoelastic Poisson’s Ratio of Solid Propellants Using Digital Image Correlation Method, Propellants Explosives Pyrotech., 2016, vol. 41, no. 5, pp. 835–843. https://doi.org/10.1002/prep.201500313

    Article  Google Scholar 

  82. Lakes, R., Foam Structure with a Negative Poisson’s Ratio, Science, 1987, vol. 235, pp. 1038–1040. https://doi.org/10.1126/science.235.4792.1038

    Article  ADS  Google Scholar 

  83. Friis, E.A., Lakes, R.S., and Park, J.B., Negative Poisson’s Ratio Polymeric and Metallic Materials, J. Mater. Sci., 1988, vol. 23, pp. 4406–4414. https://doi.org/10.1007/BF00551939

    Article  ADS  Google Scholar 

  84. Berlin, A.A., Rothenburg, L., and Bathurst, R.J, Peculiarities of Deformation of Disordered Polymeric and Nonpolymeric Bodies, Polymer Sci., 1992, vol. 34, no. 7, pp. 559–573.

    Google Scholar 

  85. Milton, G.W., Composite Materials with Poisson’s Ratios Close to –1, J. Mech. Phys. Solids, 1992, vol. 40, pp. 1105–1137. https://doi.org/10.1016/0022-5096(92)90063-8

    Article  MathSciNet  ADS  Google Scholar 

  86. Lakes, R.S. and Elms, K., Indentability of Conventional and Negative Poisson’s Ratio Foams, J. Compos. Mater., 1993, vol. 27, pp. 1193–1202. https://doi.org/10.1177/002199839302701203

    Article  ADS  Google Scholar 

  87. Caddock, B.D. and Evans, K.E., Negative Poisson Ratios and Strain-Dependent Mechanical Properties in Arterial Prostheses, Biomaterials, 1995, vol. 16, pp. 1109–1115.

    Article  Google Scholar 

  88. Chan, N. and Evans, K.E., Indentation Resilience of Conventional and Auxetic Foams, J. Cell. Plastics, 1998, vol. 34, pp. 231–260. https://doi.org/10.1177/0021955X9803400304

    Article  Google Scholar 

  89. Alderson, K.L., Fitzgerald, A., and Evans, K.E., The Strain Dependent Indentation Resilience of Auxetic Microporous Polyethylene, J. Mater. Sci., 2000, vol. 35, pp. 4039–4047. https://doi.org/10.1023/A:1004830103411

    Article  ADS  Google Scholar 

  90. Konyok, D.A., Wojciechowski, K.W., Pleskachevsky, Y.M., and Shilko, S.V., Materials with Negative Poisson’s Ratio (Review), Mekh. Kompozits. Mater. Konstrukts., 2004, vol. 10, no. 1, pp. 35–69.

    Google Scholar 

  91. Greer, A.L., Lakes, R.S., Rouxel, T., and Greaves, G.N., Poisson’s Ratio and Modern Materials, Nat. Mater., 2011, vol. 10, no. 11, pp. 823–837. https://doi.org/10.1038/NMAT3177

    Article  ADS  Google Scholar 

  92. Khokhlov, A.V., Applicability Indicators of the Linear Viscoelasticity Theory Using Creep Curves under Tensile Load Combined with Constant Hydrostatic Pressure, Mekh. Kompozits. Mater. Konstrukts., 2019, vol. 25, no. 2, pp. 259–280. https://doi.org/10.33113/mkmk.ras.2019.25.02.259_280.09

    Article  Google Scholar 

  93. Khokhlov, A.V., Analysis of the Bulk Creep Influence on Stress–Strain Curves under Tensile Loadings at Constant Rates and on Poisson’s Ratio Evolution Based on the Linear Viscoelasticity Theory, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2019, vol. 23, no. 4, pp. 671–704. https://doi.org/10.14498/vsgtu1710

    Article  Google Scholar 

  94. Khokhlov, A.V., Simulation of Hydrostatic Pressure Influence on Creep Curves and Poisson’s Ratio of Rheonomic Materials under Tension Using the Rabotnov Non-Linear Hereditary Relation, Mekh. Kompozits. Mater. Konstrukts., 2018, vol. 24, no. 3, pp. 407–436. https://doi.org/10.33113/mkmk.ras.2018.24.03.407_436.07

    Article  Google Scholar 

  95. Khokhlov, А.V., On the Capability of Linear Viscoelasticity Theory to Describe the Effect of Extending Region of Material Linearity as the Hydrostatic Pressure Grows, Moscow Univ. Mech. Bull., 2021, vol. 76, no. 1, pp. 7–14. https://doi.org/10.3103/S0027133021010040

    Article  Google Scholar 

  96. Khokhlov, A.V., Fading Memory Effect and Asymptotic Commutativity under Multi-Step Loadings in the Linear Viscoelasticity Theory, Komposit. Nanostruktur., 2022, vol. 14, no. 4, pp. 208–232. https://doi.org/10.36236/1999-7590-2022-14-4-208-232

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation under the program of the Moscow Center of Fundamental and Applied Mathematics under Agreement No. 075-15-2022-284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khokhlov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhlov, A.V. Hybridization of a Linear Viscoelastic Constitutive Equation and a Nonlinear Maxwell-Type Viscoelastoplastic Model, and Analysis of Poisson’s Ratio Evolution Scenarios under Creep. Phys Mesomech 27, 229–255 (2024). https://doi.org/10.1134/S1029959924030020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959924030020

Keywords:

Navigation