Log in

Structural-Phase State, Elastic Stress, and Functional Properties of Nanocomposite Coatings Based on Amorphous Carbon

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper analyzes the microstructure and phase state of magnetron-sputtered nanocomposite Ti-C-Ni-Cr coatings based on Ni- and Cr-doped amorphous carbon by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. The analysis shows that the coating structure comprises an amorphous carbon matrix and nanosized TiC and Ni particles with relatively low lattice bending-torsion (no greater than 75° µm−1) and with much lower local internal stress compared to its value in superhard coatings. The microhardness of such coatings on VT1-0 titanium alloy is H = 14 GPa, and their friction coefficient is µ < 0.2. The coating structure and properties are stable to annealing up to T = 700°C. After annealing at T = 900°C, the coating surface reveals TiO, Ti2O, and other oxide phases. The results of scratch testing show that the character and the scale of fracture in the coatings depend on the substrate hardness: on soft substrates, the coatings experiences intense cracking and delamination, and on hard alloy substrates, they undergo multifragmented fracture. The coatings on hard alloy substrates survive up to a load of 80 N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veprek, S. and Reiprich, S., A Concept for the Design of Novel Superhard Coatings, Thin Solid Films, 1995, vol. 268, pp. 64–71.

    Article  ADS  Google Scholar 

  2. Veprek, S. and Veprek-Hejman, M.G.J., Concept for the Design of Superhard Nanocomposites with High Thermal Stability. Their Preparation, Properties and Industrial Application, in Nanostructured Coatings, Cavaliero, A. and de Hosson, J.Th.M., Eds., New-York: Springer, 2006, pp. 347–406.

    Chapter  Google Scholar 

  3. Karvankova, P., Veprek-Hejman, M.G.J, Zundulka, O., Bergmaier, A., and Veprek, S., Superhard n-TiN/a-BN, n-TiN/a-TiBx/a-BN Coatings Prepared by Plasma CVD and PVD: A Comparative Stuffy of Their Properties, Surf. Coat. Technol., 2003, vol. 163–164, pp. 149–156.

    Article  Google Scholar 

  4. Musil, J., Hard and Superhard Coating and Nanocomposite, Surf. Coat. Technol., 2000, vol. 125, pp. 322–330.

    Article  Google Scholar 

  5. Musil, J., Physical and Mechanical Properties of Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering, in Nanostructured Coatings, Cavaliero, A. and de Hosson, J.Th.M., Eds., New-York: Springer, 2006, pp. 407–463.

    Chapter  Google Scholar 

  6. Niederhofer, A., Nesladek, P., Mannling, H.-D., Moto, K., Veprek, S., and Jilek, M., Structural Properties, Internal Stress and Thermal Stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1−yAlySix)N Superhard Nanocomposite Coatings Reaching the Hardness of Diamond, Surf. Coat. Technol., 1999, vol. 120–121, pp. 173–178.

    Article  Google Scholar 

  7. Veprek, S., Mukhergjee, S., Karvankovs, P., Mannling, H.-D., He, J.L., Moto, K., Prohazka, J., and Argon, A.S., Limits of Strength of Super- and Ultrahard Nanocomposite Coatings, J. Vac. Sci. Technol. A, 2003, vol. 21, no. 3, pp. 532–544.

    Article  ADS  Google Scholar 

  8. Holubar, P., Milek, M., and Sima, M., Nanocomposite nc-(TiAlSi)N and nc-TiN/a-BN Coatings: Their Applications on Substrates Made of Cemented Carbide and Results of Cutting Tests, Surf. Coat. Technol., 1999, vol. 120–121, pp. 184–188.

    Article  Google Scholar 

  9. Veprek, S., Nesladek, P., Niederhofer, A., Glatz, F., and Sima M., Recent Progress in the Superhard Nanocrystalline Composites Toward Their Industrialization and Understanding of the Origin of Superhard, Surf. Coat. Technol., 1998, vol. 108–109, pp. 138–147.

    Article  Google Scholar 

  10. Pei, Y.T., Galvan, D., and De Hosson, J.Th., Nanostructure and Properties of TiC/a-C:H, Acta Mater., 2005, vol. 53, pp. 4505–4521.

    Article  Google Scholar 

  11. Musil, J., Tribological and Mechanical Properties of Na-nocrystalline n-TiC/a-C Nanocomposite Thin Films, J. Vac. Sci. Technol. A, 2010, vol. 28, no. 2, pp. 244–249.

    Article  Google Scholar 

  12. Nillson, D., Svahn, F., Wiklund, U., and Hoggmark, S., Low Friction Carbon-Rich Carbide Coatings Deposited by Co-Sputtering, Wear, 2003, vol. 254, pp. 1762–1767.

    Google Scholar 

  13. Veprek, S. The Search for Novel Superhard Materials, J. Vac. Sci. Technol. A, 1999, vol. 17, no. 5, pp. 2401–2420.

    Article  ADS  Google Scholar 

  14. Karlsson, L., Horling, A., Johansson, M.P., Hultman, L., and Ramanath, G., The Influence of Thermal Annealing on Residual Stresses and Mechanical Properties of Ac-Evaporated TiCxN1−x Thin Films, Acta Mater., 2002, vol. 50, pp. 5103–5114.

    Article  Google Scholar 

  15. Vaz, F., Rebouta, L., Goudeau, Ph., Riveire, J.R., Sehafler, E., Kleer, G., and Bolman, L., Residual Stress Studied in Sputtered Ti1−xSixN Films, Thin Solid Films, 2002, vol. 402, pp. 195–202.

    Article  ADS  Google Scholar 

  16. Hultman, L., Thermal Stability of Nitride Films, Vacuum, 2000, vol. 57, pp. 1–30.

    Article  ADS  Google Scholar 

  17. Mayrhofer, P.H., Tischler, G., and Mitterer, C., Microstructure and Mechanical/Thermal Properties of CrN Coatings Deposited by Reactive Unbalanced Magnetron Sputtering, Surf. Coat. Technol., 2001, vol. 142–144, pp. 78–84.

    Article  Google Scholar 

  18. Hultman, L., Helmersson, U., Barneft, S.A., Sundgren, J.E., and Greene, J.E., Low Energy Ion Irradiation During Film Growth for Reducing Defect Densities in Epitaxial TiN (100) Film Deposited by Reactive Magnetron Sputtering, J. Appl. Phys., 1987, vol. 61, no. 2, pp. 552–565.

    Article  ADS  Google Scholar 

  19. Rafaja, D., Poklad, A., Klemm, V., Schreiber, G., Heger, D., Sima, M., and Dopita, M., Some Consequences of the Partial Crystallographic Coherence between Nano-crystalline Domains in Ti—Al—N, Ti—Al—Si—N Coatings, Thin Solid Films, 2006, vol. 514, pp. 240–249.

    Article  ADS  Google Scholar 

  20. Teer, D.G., New Solid Lubricant Coatings, Wear, 2001, vol. 251, pp. 1068–1074.

    Article  Google Scholar 

  21. San, Zh., Xuam Lam, B., and Yongoine, F., Magnetron-Sputtered n-TiC/a-C(Al) Tough Nanocomposite Coatings, Thin Solid Films, 2004, vol. 407, pp. 261–266.

    Google Scholar 

  22. Tyumentsev, A.N., Korotaev, A.D., Pinzhin, Yu.P., Safarov, A.F., and Gonchikov, V.Ch., Defect Microstructure in Titanium Nitride Submicrocrystalls, Russ. Phys. J., 1998, vol. 41, no. 7, pp. 613–619.

    Article  Google Scholar 

  23. Korotaev, A.D., Borisov, D.P., Moshkov, V.Yu., Ovchinnikov, S.V., Pinzhin, Yu.P. Savostikov, V.M., and Tyumentsev, A.N., Nanostructured and Nanocomposite Superhard Coatings, Phys. Mesomech., 2005, vol. 8, no. 5–6, p. 93–104.

    Google Scholar 

  24. Korotaev, A.D., Moshkov, V.Yu., Ovchinnikov, S.V., Pinzhin, Yu.P. Tyumentsev, A.N., Sergeev, V.P., Borisov, D.P., and Savostikov, V.M., Multicomponent Hard and Super-hard Submicro- and Nanocomposite Coatings on the Basis of Titanium and Iron Nitrides, Phys. Mesomech., 2007, vol. 10, no. 3–4, p. 156–167.

    Article  Google Scholar 

  25. Korotaev, A.D., Borisov, D.P., Moshkov, V.Yu., Ovchinnikov, S.V., Pinzhin, Yu.P., and Tyumentsev, A.N., Elastic Stress State in Superhard Multielement Coatings, Phys. Mesomech., 2009, vol. 12, no. 5–6, pp. 269–279.

    Article  Google Scholar 

  26. Korotaev, A.D., Borisov, D.P., Moshkov, V.Yu., Ovchinnikov, S.V., Tyumentsev, A.N., and Pribytkov, G.A., Peculiarities of Structural-Phase and Elastic Stress States of Superhard TiN-Based Nanocomposite Coatings, Phys. Mesomech., 2013, vol. 16, no. 1, pp. 73–83.

    Article  Google Scholar 

  27. Andreev, A.V., Litovchenko, I.Yu., Korotaev, A.D., and Borisov, D.P., Features of Structure-Phase State of Multi-element Nanocomposite Coatings Based on Amorphous Carbon, AIP Conf. Proc., 2014, vol. 1623, pp. 11–14.

    Article  Google Scholar 

  28. Borisov, D.P., Koval, N.N., Korotaev, A.D., Kuznetsov, V.M., Romanov, V.Y., Terekhov, P.A., and Chulkov, E.V., Effective Processes for Arc-Plasma Treatment in Large Vacuum Chambers of Technological Facilities, JEEE Trans. Plasma Sci., 2013, vol. 41, no. 8, pp. 2183–2195.

    Article  ADS  Google Scholar 

  29. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W., and Whelan, M.J., Electron Microscopy of Thin Crystals, London: Butterworths, 1965.

    Google Scholar 

  30. Korotaev, A.D., Tyumentsev, A.N., and Sukhovarov, V.F., Dispersion Hardening of Refractory Metals, Novosibirsk: Nauka, 1989.

    Google Scholar 

Download references

Funding

The work was performed under Fundamental Research Program of the State Academies of Sciences for 2013–2020 (direction 111.23). The equipment was provided by the Tomsk Materials Center for Collective Use (TSU) and Nanotech Shared Use Center (ISPMS SB RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Korotaev.

Additional information

Russian Text © The Author(s), 2018, published in Fizicheskaya Mezomekhanika, 2018, Vol. 21, No. 5, pp. 82–89.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotaev, A.D., Litovchenko, I.Y. & Ovchinnikov, S.V. Structural-Phase State, Elastic Stress, and Functional Properties of Nanocomposite Coatings Based on Amorphous Carbon. Phys Mesomech 22, 488–495 (2019). https://doi.org/10.1134/S1029959919060055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959919060055

Keywords

Navigation