Log in

Rolling Friction

  • MECHANICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The dependence of rolling friction on velocity for various contact conditions is discussed. The principal difference between rolling and other types of relative motion (sliding and spinning) is that the points of the body in contact with the support change over time. Due to deformations, there is a small contact area and, entering into contact, the body points have a normal velocity proportional to the diameter of this area. For describing the dependence of the friction coefficient on the angular velocity in the case of “pure” rolling, a linear dependence is proposed that admits a logical explanation and experimental verification. Under the combined motion, the rolling friction retains its properties, the sliding and spinning friction acquiring the properties of viscous friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Y. Wong, Theory of Ground Vehicles, 3d ed. (Wiley, N.Y., 2001)

    Google Scholar 

  2. R. I. Leine, Arch. Appl. Mech. 79 (11), 1063 (2009).

    Article  ADS  Google Scholar 

  3. A. V. Borisov, A. A. Kilin, and Yu. L. Karavaev, Usp. Fiz. Nauk 187 (9), 1003 (2017).

    Article  Google Scholar 

  4. A. A. Kireenkov, Dokl. Phys. 53 (4), 233 (2008).

    Article  ADS  Google Scholar 

  5. A. V. Karapetyan, Prikl. Mat. Mekh. 73 (4), 515 (2009).

    Google Scholar 

  6. K. T. McDonald, RCD 13 (4), 332 (2008).

    ADS  Google Scholar 

  7. A. M. Formal’skii, Displacement of Anthropomorphic Mechanisms (Nauka, M., 1982) [in Russian].

  8. P. Kontensu, Relationship between Sliding Friction and Spinning Friction and Its Taking into Account in Theory of Top. Problems of Gyroscopy (Mir, M., 1967) [in Russian].

  9. D. Ma, C. Liu, Z. Zhao, and H. Zhang, Proc. R. Soc. A 470, 20140191 (2014).

    Article  ADS  Google Scholar 

  10. I. G. Goriacheva, J. Appl. Math. and Mech. 37 (5), 925 (1973);

    Article  Google Scholar 

  11. I. G. Goryacheva, Prikl. Mat. Mekh. 37 (5), 877 (1973).

    Google Scholar 

  12. S. C. Hunter, J. Appl. Mech. 28 (4), 611 (1961).

    Article  ADS  Google Scholar 

  13. B. N. J. Persson, The Europ. Phys. J. E 33 (4), 327 (2010).

    Article  Google Scholar 

  14. A. V. Borisov, T. B. Ivanova, Y. L. Karavaev, and I. S. Mamaev, Europ. J. Phys. 39 (6), 065001 (2018).

    Article  Google Scholar 

  15. A. V. Borisov, A. A. Kilin, and I. S. Mamaev, Reg. and Chaot. Dyn. 18 (1/2), 144 (2013).

    Article  ADS  Google Scholar 

  16. J. Svendenius, Tire Models for Use in Braking Application (Lund: Dept. Autom. Control, Lund Inst. Technol., 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Ivanov.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.P. Rolling Friction. Dokl. Phys. 64, 129–133 (2019). https://doi.org/10.1134/S1028335819030157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335819030157

Navigation