Log in

Petrogenesis and Geochemical Implications of Neoproterozoic Gabal Ras Zeraib Granites, Central Eastern Desert, Egypt

  • PETROLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The Gabal Ras Zarieb area, located west of Quseir City in Egypt’s Central Eastern Desert, is distinguished by two distinct granitic masses of monzogranite and alkali feldspar granite. This research looked at field relations, geochemistry, and petrographic analysis to define the petrogenesis of these granites. GRZ granites are intruded with sharp obvious contacts into the island arc metavolcanics and metavolcaniclastics. The geochemical results demonstrate that alkali feldspar granite varies considerably from monzogranite in terms of composition, display a rise in SiO2 and total alkalis, and a decrease in Al2O3, TiO2, FeOt, MgO, and CaO. In comparison to monzogranite, alkali feldspar granite contains a higher concentration of Rb, Y, Zr, and Nb, as well as U and Th. With the exception of three samples, the REE patterns indicate modestly positive Eu anomalies, Eu/Eu*(1.6–2.1) for monzogranite, while alkali feldspar granites exhibit substantially negative Eu anomalies, Eu/Eu*(0.1–0.15), showing plagioclase fractionation. The monzogranite is calc-alkaline, metaluminous to peraluminous, I-type granite, and post-collisional, whereas the alkali feldspar granite is metaluminous, post-collisional, and A-type affinity, suggesting a transitional tectonic setting. Moreover, the monzogranites are formed by partial melting followed by fractional crystallization. The alkali feldspar granite is created directly from residual magma by the process of fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. M. A. Abd El-Wahed, J. Afr. Earth Sci. 100, 42–59 (2014). https://doi.org/10.1016/j.jafrearsci.2014.06.010

    Article  Google Scholar 

  2. D. Avigad and Z. Gvirtzman, Tectonophysics 477, 217–228 (2009). https://doi.org/10.1016/j.tecto.2009.04.018

    Article  Google Scholar 

  3. Y. Be’eri-Shlevin, Y. Katzir, and M. Whitehouse, J. Geol. Soc. London 166, 71–85 (2009). https://doi.org/10.1144/0016-76492007-169

    Article  Google Scholar 

  4. W. J. Collins, S. D. Beams, A. J. R. White, and B. W. Chappell, Contrib. Mineral. Petrol. 80, 189–200 (1982). https://doi.org/10.1007/bf00374895

    Article  Google Scholar 

  5. G. N. Eby, Geology 20, 641–644 (1992). https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    Article  Google Scholar 

  6. S. El Gaby, Neues Jahrb. Mineral., Abh. 124 (2), 147–189 (1975).

    Google Scholar 

  7. M. El-Bialy, Gondwana Res. 17, 26–43 (2010). https://doi.org/10.1016/j.gr.2009.06.004

    Article  Google Scholar 

  8. M. F. El-Ramly and M. K. Akaad, Egypt. Geol. Surv. Mining Auth. 8, 1–35 (1960).

    Google Scholar 

  9. E. S. Farahat, H. A. Mohamed, A. F. Ahmed, and M. M. El Mahallawi, J. Afr. Earth Sci. 49, 43–58 (2007). https://doi.org/10.1016/j.jafrearsci.2007.07.002

    Article  Google Scholar 

  10. H. Fritz, D. R. Dallmeyer, E. Wallbrecher, J. Loizenbauer, G. Hoinkes, P. Neymayr, and A. A. Khudeir, J. Afr. Earth Sci. 34, 137–155 (2002). https://doi.org/10.1016/S0899-5362(02)00014-3

    Article  Google Scholar 

  11. M. F. Ghoneim, E. M. Lebda, and M. Z. Khedr, in Proc. 6th Int. Conf. on Geochemistry (Alexandria Univ., Sept. 15–17, 2004), pp. 849–874.

  12. R. O. Greiling, M. M. Abdeen, A. A. Dardir, H. El Akhal, M. F. El Ramly, G. M. Kamal El Din, A. F. Osman, A. A. Rashwan, A. H. N. Rice, and M. F. Sadek, Geol. Rundsch. 83, 484–501 (1994). https://doi.org/10.1007/bf00194156

    Article  Google Scholar 

  13. G. N. Hanson, Earth Planet Sci Lett. 39, 26–43 (1978). https://doi.org/10.1016/0012-821x(78)90124-3

    Article  Google Scholar 

  14. A. A. Hussein, M. M. Ali, and M. F. El Ramly, J. Volcanol. Geotherm. Res. 14, 187–198 (1982). https://doi.org/10.1016/0377-0273(82)90048-8

    Article  Google Scholar 

  15. J. Jacobs and R. J. Thomas, Geology 32, 721–724 (2004).

    Article  Google Scholar 

  16. P. R. Johnson and B. Woldehaimanot, in Proterozoic East Gondwana: Supercontinent Assembly and Breakup, Ed. by M. Yoshida, B. F. Windley, and S. Dasgupta (London, 2003), Vol. 206, pp. 290–325. https://doi.org/10.1144/GSL.SP.2003.206.01.15.

  17. C. H. Langmuir, R. D. Vocke, G. N. Hanson, and S. R. Hart, Earth Planet. Sci. Lett. 37, 380–392 (1978). https://doi.org/10.1016/0012-821x(78)90053-5.

  18. A. M. Lundmark, A. Andresen, M. A. Hassan, L. E. Augland, and G. Y. Boghdady, Gondwana Res. 22 (1), 227–237 (2012). https://doi.org/10.1016/j.gr.2011.08.017

    Article  Google Scholar 

  19. P. D. Maniar and P. M. Piccoli, Geol. Soc. Am. Bull. 101, 635–643 (1989). https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Article  Google Scholar 

  20. E. A. M. Middlemost, Magma and Magmatic Rocks: An Introduction to Igneous Petrology (Longman, New York, 1985).

    Google Scholar 

  21. A. Nédélec, W. F. Stephens, and A. E. Fallick, J. Petrol. 36 (5), 1367–1391 (1995).

    Article  Google Scholar 

  22. A. M. Noweir, B. M. Sewifi, and A. M. Abu El Ela, Qatar Univ. Sci. Bull. 10, 363–393 (1990).

    Google Scholar 

  23. W. S. Pitcher, in Mountuin Building Processes, Ed. by Hsu (Acad. Press, London, 1983), pp. 19‒40.

  24. A. Rittmann, Volcanoes and Their Activity (Wiley, New York, 1962).

    Google Scholar 

  25. A. H. Sabet, V. V. Bessonenko, and B. A. Bykov, Ann. Geol. Surv. Egypt. 4, 53–73 (1976).

    Google Scholar 

  26. A. Shalaby, K. Stuwe, F. Makroum, H. Frtiz, T. Kebede, and U. Klötzli, Precambrian Res. 136, 27–50 (2005). https://doi.org/10.1016/j.precamres.2004.09.005

    Article  Google Scholar 

  27. R. J. Stern, Ph.D. Thesis (Univ. of California, San Diego, 1979).

  28. R. J. Stern, Ann. Rev. Earth Planet. Sci. 22, 319–351 (1994). https://doi.org/10.1146/annurev.ea.22.050194.001535

    Article  Google Scholar 

  29. R. J. Stern, J. Afr. Earth Sci. 34, 109–117 (2002). https://doi.org/10.1016/S0899-5362(02)00012-X

    Article  Google Scholar 

  30. R. J. Stern and C. E. Hedge, Am. J. Sci. 285, 97–172 (1985). https://doi.org/10.2475/ajs.285.2.97

    Article  Google Scholar 

  31. A. Streckeisen, Earth-Sci. Rev. 12, 1–33 (1976). https://doi.org/10.1016/0012-8252(76)90052-0

    Article  Google Scholar 

  32. P. J. Sylvester, J. Geol. 97, 261–280 (1989). http://www.jstor.org/stable/30068745.

    Article  Google Scholar 

  33. S. R. Taylor and S. M. McClennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985).

    Google Scholar 

  34. O. F. Tuttle and N. L. Bowen, Origin of Granite in the Light of Experimental Studies in the System NaAlSi 3 O 8 – SiO 2 –H 2 O (Geol. Soc. Am., 1958), Vol. 74.

  35. J. B. Whalen, K. I. Currie, and B. W. Chappell, Contrib. Mineral. Petrol. 95, 407–419 (1987). https://doi.org/10.1007/BF00402202

    Article  Google Scholar 

  36. F. Y. Wu, D. Y. Sun, H. M. Li, B. M. Jahn, and S. Wilde, Chem. Geol. 187, 143–173 (2002). https://doi.org/10.1016/S0009-2541(02)00018

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Prof. Ashraf Moharem, Nuclear Materials Authority for facilitating chemical analysis. Many thanks to Al-Azhar University’s Department of Geology for giving access to laboratories equipped with the appropriate equipment.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Taher Shahin: Conceptualization, Visualization, Methodology, Software, Validation, Writing Original draft preparation.

Corresponding author

Correspondence to Taher M. Shahin.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahin, T.M. Petrogenesis and Geochemical Implications of Neoproterozoic Gabal Ras Zeraib Granites, Central Eastern Desert, Egypt. Dokl. Earth Sc. 512, 983–997 (2023). https://doi.org/10.1134/S1028334X23600421

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X23600421

Keywords:

Navigation