Log in

The Role of Eddies in Global Oceanic Meridional Heat Transport

  • OCEANOLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Eddy meridional heat transport (EMHT) in the World Ocean is calculated using the eddy-resolving model. Its distribution is related to intense eddies and forms several typical structural types. The comparison with the results of other models shows that an explicit description of eddy dynamics is preferable for correct reproduction of EMHT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. L. Volkov, T. Lee, and L.-L. Fu, Geophys. Res. Lett. 35, L20601 (2008).

    Article  Google Scholar 

  2. S. R. Jayne and J. Marotzke, J. Phys. Oceanogr. 32, 3328–3345 (2002).

    Article  Google Scholar 

  3. B. Y. Yim, Y. Noh, B. Qiu, et al., J. Phys. Oceanogr. 40, 340–353 (2010).

    Article  Google Scholar 

  4. T. L. Delworth, A. Rosati, W. Anderson, et al., J. Clim. 25, 2755–2781 (2012).

    Article  Google Scholar 

  5. S. Williams, M. Petersen, M. Hecht, et al., Comput. Graphics Forum 31, 1125–1134 (2012).

    Article  Google Scholar 

  6. R. D. Smith, M. E. Maltrud, F. O. Bryan, et al., J. Phys. Oceanogr. 30, 1532–1561 (2000).

    Article  Google Scholar 

  7. A. E. Gill, Atmosphere-Ocean Dynamics (Acad. Press, New York, 1982).

    Google Scholar 

  8. D. L. Volkov, L.-L. Fu, and T. Lee, Ocean Dyn. 60, 791–801 (2010).

    Article  Google Scholar 

  9. A. J. Meijers, N. L. Bindoff, and J. L. Roberts, J. Phys. Oceanogr. 37, 277–295 (2007).

    Article  Google Scholar 

  10. S. M. Griffies, M. Winton, W. G. Anderson, et al., J. Clim. 28, 952–977 (2015).

    Article  Google Scholar 

  11. R. A. Ibrayev, R. N. Khabeev, and K. V. Ushakov, Izv., Atmos. Ocean. Phys. 48 (1), 37–46 (2012).

    Article  Google Scholar 

  12. V. V. Kalmykov, R. A. Ibrayev, M. N. Kaurkin, et al., Geosci. Model Dev. 11 (10), 3983–3997 (2018).

    Article  Google Scholar 

  13. K. V. Ushakov and R. A. Ibrayev, Russ. J. Earth Sci. 18, ES1004 (2018).

    Article  Google Scholar 

  14. M. J. Roberts, A. Clayton, M.-E. Demory, et al., J. Clim. 22, 2541–2556 (2009).

    Article  Google Scholar 

Download references

FUNDING

This work was performed under a State assignment of the Federal Agency for Scientific Organizations of Russia (theme no. 0149-2018-0001) and was supported in part by the Russian Foundation for Basic Research (project no. 16-05-01101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Ushakov.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, K.V., Ibrayev, R.A. The Role of Eddies in Global Oceanic Meridional Heat Transport. Dokl. Earth Sc. 486, 554–557 (2019). https://doi.org/10.1134/S1028334X19050192

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X19050192

Navigation