Log in

Parameters of Different Cloud Types over the Natural Zones of Western Siberia According to MODIS Satellite Data

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The technique of studying seasonal variations in cloud parameters over regions of Western Siberia according to satellite data is presented. Five natural zones have been identified: tundra, forest tundra, swamps, taiga, and forest steppe. A combined “summer” and “winter” classification of cloudiness is introduced; the classification includes 16 and 12 cloud types, respectively. Cloudiness images are classified using an algorithm based on neural network technologies and fuzzy logic methods. Results of analysis of seasonal variations in some parameters of different types of cloudiness and their repeatability over the considered regions of western Siberia based on MODIS satellite data for 2017 are discussed. The dependences of the seasonal variability of cloudiness parameters agree well with known literature data on ground-based observations, which corroborates the effectiveness of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Quante, “The role of clouds in the climate system,” J. Phys. IV France 121, 61–86 (2004).

    Article  Google Scholar 

  2. S. Bony, B. Stevens, D. M. W. Frierson, C. Jakob, M. Kageyama, R. Pincus, T. G. Shepherd, S. C. Sherwood, A. P. Siebesma, A. H. Sobel, M. Watanabe, and M. J. Webb, “Clouds, circulation and climate sensitivity,” Nat. Geosci. 8, 261–268 (2015).

    Article  ADS  Google Scholar 

  3. A. V. Chernokul’skii Candidate’s Dissertation in Mathematics and Physics (Institute of Atmospheric Physics RAS, 2010).

  4. http://isccp. giss.nasa.gov. Cited November 1, 2019.

  5. A. H. Young, K. R. Knapp, A. Inamdar, W. Hankins, and W. B. Rossow, “The international satellite cloud climatology project h-series climate data record product,” Earth Syst. Sci. Data 10, 583–593 (2018).

    Article  ADS  Google Scholar 

  6. A. E. Anisimov, D. A. Yarovaya, and V. S. Barabanov, “Reanalysis of atmospheric circulation for the Black Sea–Caspian region,” Morskoi Gidrofiz. Zh. No. 4, 14–28 (2015).

    Google Scholar 

  7. V. S. Komarov, G. G. Matvienko, S. N. Il’in, and N. Ya. Lomakina, “Regional features of long-term changes in cloud cover in Siberian sector of Northern hemisphere for the last 45 years (1969–2013),” Atmos. Ocean. Opt. 28 (2), 175–179 (2015).

    Article  Google Scholar 

  8. A. A. Lagutin, N. V. Volkov, E. Yu. Mordvin, and A. N. Reznikov, “Modelling Western Siberia climate: Results of the REGCM4 model,” Izv. Altaiskogo Gos. Univ. No. 1-1, 182–190 (2012).

  9. M. A. Tolstykh, “Global models of the atmosphere: Current status and development prospects,” Trudy Gidromettsentra Rossii. No. 1, 5–33 (2016).

    Google Scholar 

  10. D. P. Bespalov, A. M. Devyatkin, Yu. A. Dovgalyuk, V. I. Kondratyuk, Yu. V. Kuleshov, T. P. Svetlova, S. S. Suvorov, and V. I. Timofeev, Cloud Atlas (D’ART, St. Petersburg, 2011) [in Russian].

  11. I. P. Mazin and A. Kh. Khrgian, Clouds and Cloudy Atmosphere. Reference Book (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  12. M. D. Zelinka, S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, “Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5,” J. Clim. 26, 5007–5027 (2013).

    Article  ADS  Google Scholar 

  13. A. K. Pandit, H. S. Gadhavi, M. V. Ratnam, K. Raghunath, S. V. B. Rao, and A. Jayaraman, “Long-term trend analysis and climatology of tropical cirrus clouds using 16 years of lidar data over Southern India,” Atmos. Chem. Phys. 15, 3833–13848 (2015).

    Article  Google Scholar 

  14. T. Wang, E. J. Fetzer, S. Wong, B. H. Kahn, and Q. Yue, “Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications,” J. Geophys. Res. 121, 11 620–11 635 (2016).

    Article  Google Scholar 

  15. E. N. Bukvareva, The Role of Land Ecosystems in Climate Regulation and the Place of Russia in the Post-Kyoto Process (Tovarishchestvo nauchnykh izdanii KMK, Moscow, 2010) [in Russian].

  16. V. G. Astafurov, A. V. Skorokhodov, O. P. Musienko, and R. V. Kuriyanovich, “Classification of cloudiness from MODIS satellite data using regional statistical models for image texture and physical parameters of cloudiness during periods with snow cover,” Proc. SPIE—Int. Soc. Opt. Eng. 10833 (2018). https://doi.org/10.1117/12.2504068

  17. V. G. Astafurov, K. V. Kur’yanovich, and A. V. Skorokhodov, “A statistical model for describing the texture of cloud cover images from satellite data,” Rus. Meteorol. Hydrol. 42 (4), 248–257 (2017).

    Article  Google Scholar 

  18. V. G. Astafurov and A. V. Skorokhodov, “Statistical model of the cloud physical parameters вased on M-ODIS thematic data,” Issled. Zemli Kosmosa. No. 5, 66–81 (2017).

    Google Scholar 

  19. A. V. Skorokhodov, V. G, Astafurov, and T. V. Evsyutkin, “Application of statistical models of the image textures and physical parameters of clouds for their classification on satellite imagery MODIS,” Issled. Zemli Kosmosa. No. 4, 43–58 (2018).

    Google Scholar 

  20. M. D. King and S.-C. Tsay, Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase. https://modis.gsfc.nasa. gov/data/atbd/atbd_mod05.pdf. Cited January 15, 2020.

  21. K. Meyer, Y. Yang, and S. Platnick, “Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC),” Atmos. Meas. Tech. 9, 1785–1797 (2016).

    Article  Google Scholar 

  22. Hydrometeorology and Hydrochemistry of Seas of USSR. Vol. 2. The White Sea. Is. 1. Hydrometeorological Conditions, Ed. by B.Kh. Glukhovskaya (Gidrometeoizdat, Leningrad, 1991) [in Russian].

Download references

Funding

This work was carried out within the State Contract for the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (Research and Technological Development registration no. AAAA-A17-117021310142-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Astafurov or A. V. Skorokhodov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafurov, V.G., Skorokhodov, A.V., Kur’yanovich, K.V. et al. Parameters of Different Cloud Types over the Natural Zones of Western Siberia According to MODIS Satellite Data. Atmos Ocean Opt 33, 512–518 (2020). https://doi.org/10.1134/S1024856020050036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020050036

Keywords:

Navigation