Log in

Nephelometric method for measuring mass concentrations of urban aerosols and their respirable fractions

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A method is suggested for determining the mass concentration of airborne particles with sizes ≤1, ≤2.5, ≤10, and >10 μm by measuring the light scattering coefficients of the investigated air at the wavelengths λ1 ≤ 0.55 and λ2 ≥ 1.0 μm for the scattering angles θ1 ≤ 5° and θ2 = 15–45°. Mass concentrations of airborne particles are calculated on the basis of their stable statistical relationships with measured coefficients. Analytical expressions for approximation of these statistical relationships have been derived on the basis of an optical-microphysical model of urban aerosol, adopted by the World Meteorological Organization, with variable concentrations, size distribution parameters, and complex refractive index of the particles of aerosol components (soot, water-soluble, and dust). Statistical relationships derived in the modeling approach have been compared with independent numerical and experimental data. The errors of the method developed have been assessed under the overall variability of urban aerosol microphysical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Waggones, R. E. Weiss, N. C. Ahlquist, D. S. Covert, S. Will, and R. J. Charlson, “Optical characteristics of atmospheric aerosols,” Atmos. Environ. 15(10/11), 1891–1909 (1981).

    Article  ADS  Google Scholar 

  2. M. A. Sviridenkov, A. S. Emilenko, A. A. Isakov, and V. M. Kopeikin, “Comparison of black carbon content, aerosol optical and microphysical characteristics in Moscow and the Moscow region,” in Proc. Fifteenth ARM Science Team Meeting, Daytona Beach, Florida, March, 14–18, 2005, pp. 140–147.

  3. J. Jung, H. Lee, J. J. Kim, X. Liu, Y. Zhang, M. Hu, and N. Sogimoto, “Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 campaign of air quality research in Bei**g,” J. Geophys. Res. 114, D00G02 (2009). doi: 10.1029/2008JD010337

    ADS  Google Scholar 

  4. S. A. Lysenko and M. M. Kugeiko, “Retrieval of the mass concentration of dust in industrial emissions from optical sensing data,” Atmos. Ocean. Opt. 25(1), 35–43 (2012).

    Article  Google Scholar 

  5. S. A. Lisenko and M. M. Kugeiko, “Spectronephelometric methods to determine microphysical characteristics of dust in aspiration air and off-gases in cement plants,” J. Appl. Spectrosc. 79(1), 59–69 (2012).

    Article  ADS  Google Scholar 

  6. V. E. Zuev and V. S. Komarov, Statistical Models of Temperature and Gas Components of the Earth’s Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  7. World Climate Research Programme: A preliminary cloudless standard atmosphere for radiation computation, Report WCP-112, WMO/TD-24 (World Meteorological Organization, Geneva, 1986).

  8. ISO13320, Particle size analysis—Laser diffraction methods, 2009.

  9. B. Veihelmann, M. Konert, and W. J. van der Zande, “Size distribution of mineral aerosol: Using light-scattering models in laser particle sizing,” Appl. Opt. 45(23), 6022–6029 (2006).

    Article  ADS  Google Scholar 

  10. V. V. Barun, A. P. Ivanov, and F. P. Osipenko, “Peculiarities in spectral behavior of optical characteristics of urban aerosols by laser sensing data and model estimations,” Proc. SPIE—Int. Soc. Opt. Eng. 3983, 279–289 (1999).

    ADS  Google Scholar 

  11. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnov, Optical Constants of Natural and Technical Media (Khimiya, Leningrad, 1984) [in Russian].

    Google Scholar 

  12. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  13. L. S. Ivlev and S. D. Andreev, Optical Properties of Atmospheric Aerosols (Izd. LGU, Leningrad, 1986) [in Russian].

    Google Scholar 

  14. G. M. Krekov and S. G. Zvenigorodskii, Optical Model of the Middle Atmosphere (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  15. G. A. d’Almeida, P. Koepke, and E. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (A. Deepak Publishing, Hampton, USA, 1991).

    Google Scholar 

  16. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Watson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 EDITION,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).

    Article  ADS  Google Scholar 

  17. K. Ya. Kondrat’ev, N. I. Moskalenko, and D. V. Pozdnyakov, Atmospheric Aerosol (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  18. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (NASA Goddard Institute for space studies, New York, 2004).

    Google Scholar 

  19. M. A. Sviridenkov, “Van de Hulst approximation and dust aerosol microstructure,” Izv. RAN, Fiz. Atmosf. Okeana 29(2), 218–221 (1993).

    Google Scholar 

  20. V. V. Pol’kin, Yu. V. Artamonov, V. P. Bunyakin, and S. P. Kislitsyn, “Spatial features of distribution of atmospheric aerosol and hydrometeorological parameters from data of measurements at’ Akademik Fedorov’ RV in 2009,” Sistemy Kontrolya Okruzhayushchei Sredy, No. 13, 146–152 (2010).

    Google Scholar 

  21. A. Trier, N. Cabrini, and J. Ferrer, “Correlations between urban atmospheric light extinction coefficients and particle mass concentrations,” Atmosf. 10(3), 151–160 (1997).

    Google Scholar 

  22. M. Adam, M. Pahlow, V. Kovalev, J. M. Ondov, M. B. Parlange, and N. Nair, “Aerosol optical characterization by nephelometer and lidar: The Baltimore supersite experiment during the Canadian forest fire smoke intrusion,” J. Geophys. Res. 109, D16502 (2004). doi 10.1029/2003JD004047

    Google Scholar 

  23. A. A. Glazkova, I. N. Kuznetsova, I. Yu. Shalygina, and E. G. Semutnikova, “Daily variations in the aerosol concentration (PM10) in summer in Moscow region,” Opt. Atmosf. Okeana 25(6), 495–500 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lisenko.

Additional information

Original Russian Text © S.A. Lisenko, M.M. Kugeiko, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisenko, S.A., Kugeiko, M.M. Nephelometric method for measuring mass concentrations of urban aerosols and their respirable fractions. Atmos Ocean Opt 27, 587–595 (2014). https://doi.org/10.1134/S102485601406013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601406013X

Keywords

Navigation