Log in

Electrodeposition of Photosensitive Layers Based on Conducting Polymers and Zinc Phthalocyaninate, Their Structure and Photoelectrical Properties

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Photosensitive hybrid layers are obtained by electrochemical polymerization of pyrrole and 3,4‑ethylenedioxythiophene in the presence of water-soluble sodium salt of zinc octa(3′,5′-dicarboxyphenoxy)phthalocyaninate containing 16 ionogenic carboxylate groups. The process of the hybrid layer electrodeposition was found to occur most effectively in galvanostatic and potentiostatic modes on the sublayer of poly-3,4-ethylenedioxythiophene–polyacid complex. The electronic and chemical structure and morpho-logy of the hybrid layers of polypyrrole obtained in the presence of zinc octa(3′,5′-dicarboxyphenoxy)phthalocyaninate were studied. Possible reasons are considered why the measured values of photosensitivity and external quantum yield of charge-carrier generation in polypyrrole–zinc octa(3′,5′-dicarboxyphenoxy)phthalocyaninate are several times higher than in poly-3,4-ethylenedioxythiophene–zinc octa(3′,5′-dicarboxyphenoxy)phthalocyaninate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Simon, J., André, J., and Conwell, E., Molecular Semiconductors: Photoelectrical Properties and Solar Cells. Physics Today, 1986. p. 288.  https://doi.org/10.1063/1.2814901

  2. Gsänger, M., Bialas, D., Huang, L., Stolte, M., and Würthner, F., Organic Semiconductors based on Dyes and Color Pigments, Advanced Mater., 2016, vol. 28, no. 19, p. 3615.  https://doi.org/10.1002/adma.201505440

    Article  CAS  Google Scholar 

  3. Ray, A.K., Mukherjee, D., and Sarkar, S., Phthalocyanines: A Class of Organic Photoconductive Materials, Photoconductivity and Photoconductive Mater.: Fundamentals, Techniques and Applications: Vol. 1 and 2, 2022, p. 831. https://doi.org/10.1002/9781119579182.ch21

    Book  Google Scholar 

  4. Bao, Z., Lovinger, A.J., and Dodabalapur, A., Highly ordered vacuum-deposited thin films of metallophthalocyanines and their applications in field-effect transistors, Advanced Mater., 1997, vol. 9, no. 1, p. 42. https://doi.org/10.1002/adma.19970090108

    Article  CAS  Google Scholar 

  5. Odintsova, E.G., Petrenko, V.E., Kolker, A.M., and Borovkov, N.Y., Molecular origin of structural defects in the zinc phthalocyanine film, Phys. Chem. Chem. Phys., 2022, vol. 24, no. 33, p. 19956. https://doi.org/10.1039/D2CP01221A

    Article  CAS  PubMed  Google Scholar 

  6. Kabanova, V.A., Gribkova, O.L., Tameev, A.R., and Nekrasov, A.A., Hole transporting electrodeposited PEDOT–polyelectrolyte layers for perovskite solar cells, Mendeleev Commun., 2021, vol. 31, no. 4, p. 454. https://doi.org/10.1016/j.mencom.2021.07.005

    Article  CAS  Google Scholar 

  7. Istakova, O., Konev, D., Medvedeva, T., Zolotukhina, E., and Vorotyntsev, M., Efficiency of Pyrrole Electropolymerization under Various Conditions, Russ. J. Electrochem., 2018, vol. 54, no. 12, p. 1243. https://doi.org/10.1134/S1023193518130190

    Article  CAS  Google Scholar 

  8. Qiu, Y.-J. and Reynolds, J.R., Electrochemically initiated chain polymerization of pyrrole in aqueous media, J. Polymer Sci. Part A: Polymer Chem., 1992, vol. 30, no. 7, p. 1315. https://doi.org/10.1002/pola.1992.080300709

    Article  CAS  Google Scholar 

  9. Muthuraman, G., Shim,Y.-B., Yoon, J.-H., and Won, M.-S., Simultaneous immobilization of cobalt tetrasulfonated phthalocyanine during electropolymerization of pyrrole in presence of surfactants: a study of film morphology and its conductivity, Synthetic Metals, 2005, vol. 150, no. 2, p. 165. https://doi.org/10.1016/j.synthmet.2005.02.002

    Article  CAS  Google Scholar 

  10. Singh, V.V., Gupta, G., Sharma, R., Boopathi, M., Pandey, P., Ganesan, K., Singh, B., Tiwari, DC., Jain, R., and Vijayaraghavan, R., Detection of chemical warfare agent Nitrogen Mustard-1 based on conducting polymer phthalocyanine nanorod modified electrode, Synthetic Metals, 2009, vol. 159, no. 19, p. 1960. https://doi.org/10.1016/j.synthmet.2009.07.001

    Article  CAS  Google Scholar 

  11. Patois, T., Sanchez, J.B., Berger, F., Fievet, P., Segut, O., Moutarlier, V., Bouvet, M., and Lakard, B., Elaboration of ammonia gas sensors based on electrodeposited polypyrrole—Cobalt phthalocyanine hybrid films, Talanta, 2013, vol. 117, p. 45. https://doi.org/10.1016/j.talanta.2013.08.047

    Article  CAS  PubMed  Google Scholar 

  12. Sizun, T., Patois, T., Bouvet, M., and Lakard, B., Microstructured electrodeposited polypyrrole-phthalocyanine hybrid material, from morphology to ammonia sensing, J. Mater. Chem., 2012, vol. 22, no. 48, p. 25246. https://doi.org/10.1039/c2jm35356c

    Article  CAS  Google Scholar 

  13. Nguyen, V.C. and Potje-Kamloth, K., Electrical and chemical sensing properties of doped polypyrrole/gold Schottky barrier diodes, Thin Solid Films, 1999, vol. 338, no. 1–2, p. 142.  https://doi.org/10.1016/S0040-6090(98)01060-8

    Article  CAS  Google Scholar 

  14. Nguyen, Van C. and Potje-Kamloth, K., Electrical and NOx gas sensing properties of metallophthalocyanine-doped polypyrrole/silicon heterojunctions, Thin Solid Films, 2001, vol. 392, no. 1, p. 113. https://doi.org/10.1016/S0040-6090(01)00837-9

  15. Petrov, A.A., Lukyanov, D.A., Kopytko, O.A., Novoselova, J.V., Alekseeva, E.V., and Levin, O.V., Inversion of the Photogalvanic Effect of Conductive Polymers by Porphyrin Dopants, Catalysts, 2021, vol. 11, no. 6, p. 729. https://doi.org/10.3390/catal11060729

    Article  CAS  Google Scholar 

  16. Gribkova, O.L., Kabanova, V.A., Yagodin, A.V., et al., Water-Soluble Phthalocyanine with Ionogenic Groups as a Molecular Template for Electropolymerization of 3,4-Ethylenedioxythiophene, Russ. J. Electrochem., 2022, vol. 58, p. 957. https://doi.org/10.1134/S1023193522110076

    Article  CAS  Google Scholar 

  17. Liu, W., Jensen, T.J., Fronczek, F.R., Hammer, R.P., Smith, K. M., and Vicente, M. G. H., Synthesis and Cellular Studies of Nonaggregated Water-Soluble Phthalocyanines, J. Medic. Chem., 2005, vol. 48, no. 4, p. 1033. https://doi.org/10.1021/jm049375b

    Article  CAS  Google Scholar 

  18. Gribkova, O.L., Kabanova, V.A., and Nekrasov, A.A., Electrodeposition of thin films of polypyrrole-polyelectrolyte complexes and their ammonia-sensing properties, J. Solid State Electrochem., 2020, vol. 24, no. 11, p. 3091. https://doi.org/10.1007/s10008-020-04766-0

    Article  CAS  Google Scholar 

  19. Kabanova, V., Gribkova, O., and Nekrasov, A., Poly(3,4-ethylenedioxythiophene) Electrosynthesis in the Presence of Mixtures of Flexible-Chain and Rigid-Chain Polyelectrolytes, Polymers, 2021, vol. 13, no. 22, p. 3866. https://doi.org/10.3390/polym13223866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lokesh, K.S. and Adriaens, A., Electropolymerization of palladium tetraaminephthalocyanine: Characterization and supercapacitance behavior, Dyes and Pigments, 2015, vol. 112, p. 192.  https://doi.org/10.1016/j.dyepig.2014.06.034

    Article  CAS  Google Scholar 

  21. Aroca, R., Dilella, D.P., and Loutfy, R.O., Raman spectra of solid films-I. Metal-free phthalocyanine, J. Phys. and Chem. Solids, 1982, vol. 43, no. 8, p. 707.  https://doi.org/10.1016/0022-3697(82)90235-9

    Article  CAS  Google Scholar 

  22. Gribkova, O.L., Kabanova, V.A., Iakobson, O.D., and Nekrasov, A.A., Spectroelectrochemical investigation of electrodeposited polypyrrole complexes with sulfonated polyelectrolytes, Electrochim. Acta, 2021, vol. 382, article # 138307. https://doi.org/10.1016/j.electacta.2021.138307

    Article  CAS  Google Scholar 

  23. Gribkova, O.L., Iakobson, O.D., Nekrasov, A.A., Cabanova, V.A., Tverskoy, V.A., Tameev, A.R., and Vannikov, A.V., Ultraviolet-Visible-Near Infrared and Raman spectroelectrochemistry of poly(3,4-ethylenedioxythiophene) complexes with sulfonated polyelectrolytes. The role of inter- and intra-molecular interactions in polyelectrolyte, Electrochim. Acta, 2016, vol. 222, p. 409. https://doi.org/10.1016/j.electacta.2016.10.193

    Article  CAS  Google Scholar 

  24. Potje-Kamloth, K., Chemical Gas Sensors Based on Organic Semiconductor Polypyrrole, Critical Rev. in Analytical Chem., 2002, vol. 32, no. 2, p. 121.  https://doi.org/10.1080/10408340290765489

    Article  CAS  Google Scholar 

  25. Zafar, Q., Fatima, N., Karimov, K.S., Ahmed, M.M., and Sulaiman, K., Realizing broad-bandwidth visible wavelength photodiode based on solution-processed ZnPc/PC71BM dyad, Optical Mater., 2017, vol. 64, p. 131. https://doi.org/10.1016/j.optmat.2016.12.001

    Article  CAS  Google Scholar 

  26. Nath, D., Dey, P., Joseph, A.M., Rakshit, J. K., and Roy, J. N., CuPc/C60 heterojunction for high responsivity zero bias organic red light photodetector, Appl. Phys. A: Mater. Sci. and Processing, 2020, vol. 126, no. 8, p. 627. https://doi.org/10.1007/s00339-020-03806-w

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The UV-, vis-, and IR-electronic absorption spectra, Raman-spectra, and AFM-microphotographs of film surfaces were recorded using equipment from CKP FMI IPCE RAS.

Funding

This work was supported by the Russian Science Foundation, grant no. 23-19-00884, section “Study of photoelectrochemical properties of PPy–ZnPc hybrid layers” and the Ministry of Sciences and Higher Education of the Russian Federation (topic of the Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, no, 122011300052-1, sections “Electrosynthesis study of physico-chemical properties of PPy–ZnPc hybrid layers.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. L. Gribkova or A. A. Nekrasov.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribkova, O.L., Kabanova, V.A., Kormshchikov, I.D. et al. Electrodeposition of Photosensitive Layers Based on Conducting Polymers and Zinc Phthalocyaninate, Their Structure and Photoelectrical Properties. Russ J Electrochem 60, 448–458 (2024). https://doi.org/10.1134/S102319352470006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352470006X

Keywords:

Navigation