Log in

The Never-Ending Story of the Phylogeny and Taxonomy of Genus Triticum L.

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The aim of many breeding programs for the conservation of genetic biodiversity is to preserve the genetic resources of wild species of wheat. Long-term selection combined with genetic drift (random changes in allele frequency within a population) and the bottleneck effect (a sudden random event that decreases the size of a population and limits its gene pool) have depleted the genetic diversity of the most popular species of the genus Triticum:common wheat (T. aestivum ssp. aestivum) and durum wheat (T. turgidum ssp. durum). These changes have turned the researchers’ attention to ancient species of wheat, including einkorn (T. monococcum ssp. monococcum), emmer (T. turgidum ssp. dicoccum) and spelt (T. aestivum ssp. spelta). Ancient species are characterized by a rich gene pool, and the most desirable genes can be transferred to the cultivated wheat species via introgression. Advanced molecular techniques support increasingly complex analyses of genetic diversity in various accessions of the genus Triticum and detailed examinations of their relationship, which determines changes in the taxonomy of the genus Triticum. Genetic diversity analyses increasingly often rely on DNA markers with various sensitivity, mostly restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeat (SSR), single-nucleotide polymorphism (SNP) and diversity arrays technology (DArT) markers. The development of a universal taxonomic system for the genus Triticum is a highly challenging task. Continued efforts are being made in this area to expand our knowledge about the phylogeny of wheat and systematize various accessions in genetic databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Joerin, U.E., Stocker, T.F., and Schlüchter, C., Multicentury glacier fluctuations in the Swiss Alps during the Holocene, Holocene, 2006, vol. 16, pp. 697—704.

    Article  Google Scholar 

  2. Goncharov, N.P., Genus Triticum L. taxonomy: the present and the future, Plant Syst. Evol., 2011, vol. 295, pp. 1—11.

    Article  Google Scholar 

  3. Goncharov, N.P., Golovnina, K.A., and Kondratenko, E.Y., Taxonomy and molecular phylogeny of natural and artificial wheat species, Breed. Sci., 2009, vol. 59, pp. 492—498.

    Article  CAS  Google Scholar 

  4. Feldman, M., Levy, A.A., Fahima, T., and Korol, A., Genomic asymmetry in allopolyploid plants: wheat as a model, J. Exp. Bot., 2012, vol. 63, pp. 5045—5059.

    Article  CAS  PubMed  Google Scholar 

  5. Feldman, M., and Levy, A.A., Allopolyploidy—a sha** force in the evolution of wheat genomes, Cytogenet. Genome Res., 2005, vol. 109, pp. 250—258.

    Article  CAS  PubMed  Google Scholar 

  6. Blake, N.K., Lehfeldt, B.R., Lavin, M., and Talbert, L.E., Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: the B genome of wheat, Genome, 1999, vol. 42, pp. 351—360.

    Article  CAS  PubMed  Google Scholar 

  7. Özkan, H., Willcox, G., Graner, A., et al., Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides), Genet. Resour. Crop Evol., 2011, vol. 58, pp. 11—53.

    Article  Google Scholar 

  8. Peng, J.H., Sun, D., and Nevo, E., Domestication evolution, genetics and genomics in wheat. Mol. Breed., 2011, vol. 28, pp. 281—301.

    Article  CAS  Google Scholar 

  9. Mándy, G., New concept of the origin of Triticum aestivum L., Acta Agron. Hung., 1970, vol. 19, pp. 413—417.

    Google Scholar 

  10. Lilienfeld, F. and Kihara, H., Genomanalyse bei Triticum und Aegilops: 5. Triticum timopheevi Zhuk, Cytologia, 1934, vol. 6, pp. 87—122.

    Article  Google Scholar 

  11. Ozbek, O., Millet, E., Anikster, Y., et al., Spatio-temporal genetic variation in populations of wild emmer wheat, Triticum turgidum ssp. dicoccoides, as revealed by AFLP analysis, Theor. Appl. Genet., 2007, vol. 115, pp. 19—26.

    Article  CAS  PubMed  Google Scholar 

  12. Dedkova, O.S., Badaeva, E.D., Mitrofanova, O.P., et al., Analysis of intraspecific diversity of cultivated emmer Triticum dicoccum (Schrank.) Schubl. using C‑banding technique. Russ. J. Genet., 2007, vol. 43, pp. 1271—1285.

    Article  CAS  Google Scholar 

  13. Teklu, Y., Hammer, K., and Röder, M.S., Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): analysis of genetic diversity and differentiation, Genet. Resour. Crop Evol., 2007, vol. 54, pp. 543—554.

    Article  CAS  Google Scholar 

  14. Maccaferri, M., Cane, M.A., Sanguineti, M.C., et al., A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association map**, BMC Genomics, 2014, vol. 15, p. 873.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Golovnina, K.A., Glushkov, S.A., Blinov, A.G., et al., Molecular phylogeny of the genus Triticum L., Plant Syst. Evol., 2007, vol. 264, pp. 195—216.

    Article  CAS  Google Scholar 

  16. Dvorak, J., Deal, K.R., Luo, M.C., et al., The origin of spelt and free-threshing hexaploid wheat, J. Hered., 2012, vol. 103, pp. 426—441.

    Article  CAS  PubMed  Google Scholar 

  17. El Baidouri, M., Murat, F., Veyssiere, M., et al., Reconciling the evolutionary origin of bread wheat (Triticum aestivum), New Phytol., 2017, vol. 213, pp. 1477—1486.

    Article  CAS  PubMed  Google Scholar 

  18. Özkan, H., Brandolini, A., Schäfer-Pregl, R., and Salamini, F., AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey, Mol. Biol. Evol., 2002, vol. 19, pp. 1797—1801.

    Article  PubMed  Google Scholar 

  19. Giuliani, A., Karagöz, A., and Zencirci, N., Emmer (Triticum dicoccon) production and market potential in marginal mountainous areas of Turkey, Mt. Res. Dev., 2009, vol. 29, pp. 220—229.

    Article  Google Scholar 

  20. Zaharieva, M., Ayana, N.G., Al Hakimi, A., et al., Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review, Genet. Resour. Crop Evol., 2010, vol. 57, pp. 937—962.

    Article  Google Scholar 

  21. Stallknecht, G.F., Gilbertson, K.M., and Ranney, J.E., Alternative wheat cereals as food grains: einkorn, emmer, spelt, kamut, and triticale, in Progress in New Crops, 1996, pp. 156—170.

  22. Serpen, A., Gökmen, V., Pellegrini, N., and Fogliano, V., Direct measurement of the total antioxidant capacity of cereal products, J. Cereal Sci., 2008, vol. 48, pp. 816—820.

    Article  CAS  Google Scholar 

  23. Lachman, J., Hejtmánková, K., and Kotíková, Z., Tocols and carotenoids of einkorn, emmer and spring wheat varieties: selection for breeding and production, J. Cereal Sci., 2013, vol. 57, pp. 207—214.

    Article  CAS  Google Scholar 

  24. Vincentini, O., Borrelli, O., Silano, M., et al., T-cell response to different cultivars of farro wheat, Triticum turgidum ssp. dicoccum, in celiac disease patients, Clin. Nutr., 2009, vol. 28, pp. 272—277.

    Article  CAS  PubMed  Google Scholar 

  25. Teklu, Y. and Hammer, K., Farmers’ perception and genetic erosion of tetraploid wheats landraces in Ethiopia, Genet. Resour. Crop Evol., 2006, vol. 53, pp. 1099—1113.

    Article  Google Scholar 

  26. Mac Key, J., Durum Wheat Breeding: Current Approaches and Future Strategies, CRC Press, Boca Raton, 2005, vol. 1.

    Google Scholar 

  27. Maccaferri, M., Sanguineti, M.C., Corneti, S., et al., Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability, Genetics, 2008, vol. 178, pp. 489—511.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ranieri, R., Geography of the Durum Wheat Crop, Open Fields, 2015. http://www.openfields.it/sito/wpcontent/uploads/2016/01/PASTARIA2015_N06_en-artOF. pdf.

  29. Troccoli, A., Borrelli, G.M., De Vita, P., et al., Mini review: durum wheat quality: a multidisciplinary concept, J. Cereal Sci., 2000, vol. 32, pp. 99—113.

    Article  Google Scholar 

  30. Zohary, D., Hopf, M., and Weiss, E., Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin, Oxford University Press, 2012.

    Book  Google Scholar 

  31. Monah, F., The Spread of Cultivated Plants in the Region between the Carpathians and Dniestr, 6th–4th millenia cal BC: The Origins and Spread of Domestic Plants in Southwest Asia and Europe, New York: Routledge, 2007.

    Google Scholar 

  32. Pospíšil, R. and Ržonca, J., Energy and carbon dioxide balance by different cultivation technologies of winter wheat, Acta Fytotech. Zootech., 2011, vol. 14, pp. 45—51.

    Google Scholar 

  33. Waga, J., Wegrzyn, S., Boros, D., and Cygankiewicz, A., Wykorzystanie orkiszu (Triticum aestivum ssp. spelta) do poprawy właściwości odżywczych pszenicy zwyczajnej (Triticum aestivum ssp. vulgare), Biul. Inst. Hodowli Aklim. Roślin, 2002, vol. 221, pp. 3—16.

    Google Scholar 

  34. Nielsen, N.H., Backes, G., Stougaard, J., et al., Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties, PLoS One, 2014, vol. 9. e94000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Altıntaş, S., Toklu, F., Kafkas, S., et al., Estimating genetic diversity in durum and bread wheat cultivars from Turkey using AFLP and SAMPL markers, Plant Breed., 2008, vol. 127, pp. 9—14.

    Google Scholar 

  36. Çifçi, E.A. and Yağdi, K., Study of genetic diversity in wheat (Triticum aestıvum) varieties using random amplified polymorphic DNA (RAPD) analysis, Turk. J. Field Crops, 2012, vol. 17, pp. 91—95.

    Google Scholar 

  37. Brisson, N., Gate, P., Gouache, D., et al., Why are wheat yields stagnating in Europe? A comprehensive data analysis for France, Field Crop Res., 2010, vol. 119, pp. 201—212.

    Article  Google Scholar 

  38. Linnaeus, C., Species Plantarum, Holmiae: Impensis Laurentii Salvii, 1753.

  39. Körnicke, F., Der Weizen, Handbuch des Getreidebaus, Körnicke, F. and Werner, H., Eds., Berlin: Paul Parey, 1885, vol. 1, pp. 22—114.

    Book  Google Scholar 

  40. Mac Key, J., Sec. Dicoccoides Flaksb. of Wheat, Its Phylogeny, Diversification and Subdivision (Proc. Symp. Ext. Availability Wheat Genet. Res.), Bari, 1977.

  41. Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., et al., Kul’turnaya flora SSSR (Cultivated Flora of the Soviet Union), vol. 1: Pshenitsa (Wheat), Leningrad: Kolos, 1979.

  42. van Slageren, M.W., Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae), Wageningen Agricultural University Papers, 1994.

    Google Scholar 

  43. Goncharov, N.P., Comparative-genetic analysis a base for wheat taxonomy revision, Czech. J. Genet. Plant Breed., 2005, vol. 41, pp. 52—55.

    Article  Google Scholar 

  44. Mac Key, J., Mutagenesis in vulgare wheat, Hereditas, 1968, vol. 59, pp. 505—517.

    CAS  Google Scholar 

  45. Mac Key, J., Genus Triticum and its systematics, Naslediye Vavilova v sovremennoy biologii (Vavilov’s Legacy in Modern Biology), Shumny, V.K., Ed., Nauka, Moscow, 1989.

    Google Scholar 

  46. Swaminathan, M.S. and Rao, M.V.P., Macro-mutations and sub-specific differentiation in Triticum, Wheat Inf. Serv., 1961, vol. 13, pp. 9—11.

    Google Scholar 

  47. Hammer, K., Filatenko, A.A. and Pistrick, K., Taxonomic remarks on Triticum L. and ×Triticosecale Wittm., Genet. Resour. Crop Evol., 2011, vol. 58, pp. 3—10.

    Article  Google Scholar 

  48. Mitka, J., Taksonomia linneuszowska w dobie biologii molekularnej, Fragm. Flor. Geobot. Suppl., 2004, vol. 6, pp. 9—31.

    Google Scholar 

  49. Liu, X., Ju X., Zhang, F., Pan, J., and Christie, P., Nitrogen dynamics and budgets in a winter wheat—maize crop** system in the North China Plain, Field Crop Res., 2003, vol. 83, pp. 111—124.

    Article  Google Scholar 

  50. Barker, M.K. and Seedhom, B.B., The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime?, Rheumatology, 2001, vol. 40, pp. 274—284.

    Article  CAS  PubMed  Google Scholar 

  51. Neel, M.C. and Cummings, M.P., Section-level relationships of North American Agalinis (Orobanchaceae) based on DNA sequence analysis of three chloroplast gene regions, BMC Evol. Biol., 2004, vol. 4, p. 15.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Caldwell, K.S., Dvorak, J., Lagudah, E.S., et al., Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor, Genetics, 2004, vol. 167, pp. 941—947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mori, N., Liu, Y.G., and Tsunewaki, K., Wheat phylogeny determined by RFLP analysis of nuclear DNA: 2. Wild tetraploid wheats, Theor. Appl. Genet., 1995, vol. 90, pp. 129—134.

    Article  CAS  PubMed  Google Scholar 

  54. Tudge, C., The Variety of Life, Oxford: Oxford University Press, 2000.

    Google Scholar 

  55. Fedak, G., Alien introgressions from wild Triticum species, T. monococcum, T. urartu, T. turgidum, T. dicoccum, T. dicoccoides, T. carthlicum, T. araraticum, T. timopheevii, and T. miguschovae, in Alien Introgression in Wheat, Springer-Verlag, 2015.

    Google Scholar 

  56. Chantret, N., Salse, J., Sabot, F., et al., Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops), Plant Cell, 2005, vol. 17, pp. 1033—1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Özkan, H., Tuna, M., Kilian, B., et al., Genome size variation in diploid and tetraploid wild wheats, AoB Plants, 2010. plq015

  58. Wenzl, P., Carling, J., Kudrna, D., et al., Diversity Arrays Technology (DArT) for whole-genome profiling of barley, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 9915—9920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kimber, G. and Sears, E.R., Evolution in the genus Triticum and the origin of cultivated wheat, in Wheat and Wheat Improvement, Madison, WI: American Society of Agronomy, 1987, 2nd ed.

    Google Scholar 

  60. Jakubizner, M.M., New Wheat Species, Winnipeg: The Public Press, 1959.

    Google Scholar 

  61. Johnson, B.L., Identification of the apparent B-genome donor of wheat, Can. J. Genet. Cytol., 1975, vol. 17, pp. 21—39.

    Article  Google Scholar 

  62. Moghaddam, M., Ehdaie, B., and Waines, J.G., Genetic diversity in populations of wild diploid wheat Triticum urartu Tum. ex. Gandil. revealed by isozyme markers, Genet. Resour. Crop Evol., 2000, vol. 47, pp. 323—334.

    Article  Google Scholar 

  63. Yaghoobi-Saray, J., An in Triticum-Aegilops Complex Electrophoretic Analysis of Genetic Variation within and between Populations of Five Species, Ph.D. Dissertation, Davis: University of California, 1979.

  64. Dudnikov, A.J., Allozymes and growth habit of Aegilops tauschii: genetic control and linkage patterns, Euphytica, 2003, vol. 129, pp. 89—97.

    Article  CAS  Google Scholar 

  65. Lubbers, E.L., Gill, K.S., Cox, T.S., and Gill, B.S., Variation of molecular markers among geographically diverse accessions of Triticum tauschii, Genome, 1991, vol. 34, pp. 354—361.

    Article  Google Scholar 

  66. Kam-Morgan, L.N.W., Gill, B.S., and Muthukrishnan, S., DNA restriction fragment length polymorphisms: a strategy for genetic map** of D genome of wheat, Genome, 1989, vol. 32, pp. 724—732.

    Article  CAS  Google Scholar 

  67. Pestsova, E., Korzun, V., Goncharov, N.P., et al., Microsatellite analysis of Aegilops tauschii germplasm, Theor. Appl. Genet., 2000, vol. 101, pp. 100—106.

    Article  CAS  Google Scholar 

  68. Dvorak, J., Luo, M.C., Yang, Z.L., and Zhang, H.B., The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat, Theor. Appl. Genet., 1998, vol. 97, pp. 657—670.

    Article  CAS  Google Scholar 

  69. Zohary, D. and Hopf, M., Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley, Oxford, UK: Oxford University Press, 2000, 3rd ed.

    Google Scholar 

  70. **g, H.C., Kornyukhin, D., Kanyuka, K., et al., Identification of variation in adaptively important traits and genome-wide analysis of trait—marker associations in Triticum monococcum, J. Exp. Bot., 2007, vol. 58, pp. 3749—3764.

    Article  CAS  PubMed  Google Scholar 

  71. Tranquilli, G., Heaton, J., Chicaiza, O., and Dubcovsky, J., Substitutions and deletions of genes related to grain hardness in wheat and their effect on grain texture, Crop Sci., 2002, vol. 42, pp. 1812—1817.

    Article  CAS  Google Scholar 

  72. **g, H.C., Bayon, C., Kanyuka, K., et al., DArT markers: diversity analyses, genomes comparison, map** and integration with SSR markers in Triticum monococcum, BMC Genomics, 2009, vol. 10, p. 458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Castagna, R., Maga, G., Perenzin, M., et al., RFLP-based genetic relationships of einkorn wheats, Theor. Appl. Genet., 1994, vol. 88, pp. 818—823.

    Article  CAS  PubMed  Google Scholar 

  74. Figliuolo, G. and Perrino, P., Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. revealed by RFLPs and SSRs, Genet. Resour. Crop Evol., 2004, vol. 51, pp. 519—527.

    Article  CAS  Google Scholar 

  75. Rashed, M.A., Abou-Deif, M.H., Sallam, M.A.A., et al., Identification and prediction of the flour quality of bread wheat by gliadin electrophoresis, J. Appl. Sci. Res., 2007, vol. 3, pp. 1393—1399.

    CAS  Google Scholar 

  76. Henkrar, F., El-Haddoury, J., Ouabbou, H., et al., Genetic diversity and its temporal changes in improved bread wheat cultivars of Morocco, Rom. Agric. Res., 2015, vol. 32, pp. 19—25.

    Google Scholar 

  77. Moragues, M., Moralejo, M., Sorrells, M.E., and Royo, C., Dispersal of durum wheat [Triticum turgidum L. ssp. turgidum convar. durum (Desf.) MacKey] landraces across the Mediterranean basin assessed by AFLPs and microsatellites, Genet. Resour. Crop Evol., 2007, vol. 54, pp. 1133—1144.

    Article  CAS  Google Scholar 

  78. Fahima, T., Röder, M.S., Wendehake, K., et al., Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel, Theor. Appl. Genet., 2002, vol. 104, pp. 17—29.

    Article  CAS  PubMed  Google Scholar 

  79. Ren, J., Sun, D., Chen, L., et al., Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat, Int. J. Mol. Sci., 2013, vol. 14, pp. 7061—7088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Capparelli, A., Lema, V., Giovannetti, M., and Raffino, R., The introduction of Old World crops (wheat, barley and peach) in Andean Argentina during the 16th century AD: archaeobotanical and ethnohistorical evidence, Veget. Hist. Archaeobot., 2005, vol. 14, pp. 472—484.

    Article  Google Scholar 

  81. Asplund, L., Hagenblad, J., and Leino, M.W., Re-evaluating the history of the wheat domestication gene NAM-B1 using historical plant material, J. Archaeol. Sci., 2010, vol. 37, pp. 2303—2307.

    Article  Google Scholar 

  82. Maccaferri, M., Sanguineti, M.C., Donini, P., and Tuberosa, R., Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm, Theor. Appl. Genet., 2003, vol. 107, pp. 783—797.

    Article  CAS  PubMed  Google Scholar 

  83. Salamini, F., Özkan, H., Brandolini, A., et al., Genetics and geography of wild cereal domestication in the Near East, Nat. Rev. Genet., 2002, vol. 3, pp. 429—441.

    Article  CAS  PubMed  Google Scholar 

  84. Hammer, K., Microsatellite markers—a new tool for distinguishing diploid wheat species, Genet. Resour. Crop Evol., 2000, vol. 47, pp. 497—505.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Goriewa-Duba.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goriewa-Duba, K., Duba, A., Wachowska, U. et al. The Never-Ending Story of the Phylogeny and Taxonomy of Genus Triticum L.. Russ J Genet 54, 1429–1437 (2018). https://doi.org/10.1134/S1022795418120037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418120037

Keywords:

Navigation