Log in

The analysis of association between type 2 diabetes and polymorphic markers in the CDKAL1 gene and in the HHEX/IDE locus

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The increase in diabetes was noted at the turn of the 21st century. Patients with type 2 diabetes (T2DM) make up the majority of patients. Diabetes is a multifactorial disease. It arises from adverse effects of environmental factors on the body of genetically susceptible peoples. According to modern concepts, T2DM is a polygenic disease. Each of the involved genes contributes to the risk of develo** of this disease. In our study, the association between polymorphic genetic markers rs7756992, rs9465871, rs7754840, and rs10946398 in the CDKAL1 gene and rs1111875 in the HHEX/IDE locus and T2DM in the Russian population were studied. Four hundred forty patients with type 2 diabetes and 264 healthy individuals without any signs of the disease were examined. The comparative analysis of distribution of genotypes and allele frequencies points to an association between polymorphic genetic markers rs7756992, rs9465871, and rs10946398 in the CDKAL1 gene and this disease. For the other polymorphic genetic markers (rs7754840 in the CDKAL1 gene and rs1111875 in the HHEX/IDE locus), no statistically significant associations are found. On the basis of these data, we can conclude that the CDKAL1 gene is associated with development of T2DM. For the HHEX/IDE locus, such an association is absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grant, R.W., Moore, F., and Florez, J.C., Genetic architecture of type 2 diabetes: recent progress and clinical implications, Diabetes Care, 2009, vol. 32, no. 6, pp. 1107–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Parikh, H., Lyssenko, V., and Groop, L.C., Prioritizing genes for follow-up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus, BMC Med. Genomics, 2009, vol. 2, p. 72.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hurst, C.D., Tomlinson, D.C., Williams, S.V., et al., Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumours with 6p22 amplification, Oncogene, 2008, vol. 27, no. 19, pp. 2716–2727.

    Article  CAS  PubMed  Google Scholar 

  4. Wei, F.-Y., Nagashima, K., Ohshima, T., et al., Cdk5-dependent regulation of glucose-stimulated insulin secretion, Nat. Med., 2005, vol. 11, no. 10, pp. 1104–1108.

    Article  CAS  PubMed  Google Scholar 

  5. Ubeda, M., Rukstalis, J.M., and Habener, J.F., Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity, J. Biol. Chem., 2006, vol. 281, no. 39, pp. 28858–28864.

    Article  CAS  PubMed  Google Scholar 

  6. Steinthorsdottir, V., Thorleifsson, G., Reynisdottir, I., et al., A variant in CDKAL1 influences insulin response and risk of type 2 diabetes, Nat. Genet., 2007, vol. 39, no. 6, pp. 770–775.

    Article  CAS  PubMed  Google Scholar 

  7. Mapelli, M. and Musacchio, A., The structural perspective on CDK5, Neurosignals, 2003, vol. 12, no. 4–5, pp. 164–172.

    Article  CAS  PubMed  Google Scholar 

  8. Hawasli, A.H., Benavides, D.R., Nguyen, C., et al., Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation, Nat. Neurosci., 2007, vol. 10, no. 7, pp. 880–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Benavides, D.R., Quinn, J.J., Zhong, P., et al., Cdk5 modulates cocaine reward, motivation, and striatal neuron excitability, J. Neurosci., 2007, vol. 27, no. 47, pp. 12967–12976.

    Article  CAS  PubMed  Google Scholar 

  10. Ubeda, M., Kemp, D.M., and Habener, J.F., Glucoseinduced expression of the cyclin-dependent protein kinase 5 activator p35 involved in Alzheimer’s disease regulates insulin gene transcription in pancreatic betacells, Endocrinology, 2004, vol. 145, no. 6, pp. 3023–3031.

    Article  CAS  PubMed  Google Scholar 

  11. Dehwah, M.A., Wang, M., and Huang, Q.-Y., CDKAL1 and type 2 diabetes: a global meta-analysis, Genet. Mol. Res., 2010, vol. 9, no. 2, pp. 1109–1120.

    Article  CAS  PubMed  Google Scholar 

  12. Pascoe, L., Tura, A., Patel, S.K., et al., Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function, Diabetes, 2007, vol. 56, no. 12, pp. 3101–3104.

    Article  CAS  PubMed  Google Scholar 

  13. Wen, J., Rönn, T., Olsson, A., et al., Investigation of type 2 diabetes risk alleles support CDKN2A/B,CDKAL1,and TCF7L2 as susceptibility genes in a Han Chinese cohort, PLoS One, 2010, vol. 5, no. 2. e9153

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hu, C., Zhang, R., Wang, C., et al., PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population, PLoS One, 2009, vol. 4, no. 10. e7643

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cauchi, S., Meyre, D., Durand, E., et al., Post genome-wide association studies of novel genes associated with type 2 diabetes show gene–gene interaction and high predictive value, PLoS One, 2008, vol. 3, no. 5. e2031

    Article  PubMed  PubMed Central  Google Scholar 

  16. van Hoek, M., Dehghan, A., Witteman, J.C.M., et al., Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a populationbased study, Diabetes, 2008, vol. 57, no. 11, pp. 3122–3128.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wu, Y., Li Huaixing, Loos, R.J.F., et al., Common variants in CDKAL1,CDKN2A/B,IGF2BP2,SLC30A8,and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population, Diabetes, 2008, vol. 57, no. 10, pp. 2834–2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lewis, J.P., Palmer, N.D., Hicks, P.J., et al., Association analysis in African Americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies, Diabetes, 2008, vol. 57, no. 8, pp. 2220–2225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tabara, Y., Osawa, H., Kawamoto, R., et al., Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening, Diabetes, 2009, vol. 58, no. 2, pp. 493–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rong, R., Hanson, R.L., Ortiz, D., et al., Association analysis of variation in/near FTO,CDKAL1,SLC30A8,HHEX,EXT2,IGF2BP2,LOC387761,and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians, Diabetes, 2009, vol. 58, no. 2, pp. 478–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cunnington, M.S., Santibanez, K.M., Mayosi, B.M., et al., Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression, PLoS Genet., 2010, vol. 6, no. 4. e1000899

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhao, J., Li, M., Bradfield, J.P., et al., Examination of type 2 diabetes loci implicates CDKAL1 as a birth weight gene, Diabetes, 2009, vol. 58, no. 10, pp. 2414–2418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sladek, R., Rocheleau, G., Rung, J., et al., A genomewide association study identifies novel risk loci for type 2 diabetes, Nature, 2007, vol. 445, no. 7130, pp. 881–885.

    Article  CAS  PubMed  Google Scholar 

  24. Bort, R., Martinez-Barbera, J.P., Beddington, R.S.P., et al., Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas, Development, 2004, vol. 131, no. 4, pp. 797–806.

    Article  CAS  PubMed  Google Scholar 

  25. Duckworth, W.C., Bennett, R.G., and Hamel, F.G., Insulin degradation: progress and potential, Endocr. Rev., 1998, vol. 19, no. 5, pp. 608–624.

    CAS  PubMed  Google Scholar 

  26. Seta, K.A. and Roth, R.A., Overexpression of insulin degrading enzyme: cellular localization and effects on insulin signaling, Biochem. Biophys. Res. Commun., 1997, vol. 231, no. 1, pp. 167–171.

    Article  CAS  PubMed  Google Scholar 

  27. Jones, C.N., Pei, D., Staris, P., et al., Alterations in the glucose-stimulated insulin secretory dose–response curve and in insulin clearance in nondiabetic insulinresistant individuals, J. Clin. Endocrinol. Metab., 1997, vol. 82, no. 6, pp. 1834–1838.

    Article  CAS  PubMed  Google Scholar 

  28. Kurochkin, I.V., Insulin-degrading enzyme: embarking on amyloid destruction, Trends Biochem. Sci., 2001, vol. 26, no. 7, pp. 421–425.

    Article  CAS  PubMed  Google Scholar 

  29. Fawcett, J., Permana, P.A., Levy, J.L., et al., Regulation of protein degradation by insulin-degrading enzyme: analysis by small interfering RNA-mediated gene silencing, Arch. Biochem. Biophys., 2007, vol. 468, no. 1, pp. 128–133.

    Article  CAS  PubMed  Google Scholar 

  30. Farris, W., Mansourian, S., Chang, Y., et al., Insulindegrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 7, pp. 4162–4167.

    CAS  PubMed  Google Scholar 

  31. Furukawa, Y., Shimada, T., Furuta, H., et al., Polymorphisms in the IDE-KIF11-HHEX gene locus are reproducibly associated with type 2 diabetes in a Japanese population, J. Clin. Endocrinol. Metab., 2008, vol. 93, no. 1, pp. 310–314.

    Article  CAS  PubMed  Google Scholar 

  32. Staiger, H., Machicao, F., Stefan, N., et al., Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function, PLoS One, 2007, vol. 2, no. 9. e832

    Article  PubMed  PubMed Central  Google Scholar 

  33. Staiger, H., Stancáková, A., Zilinskaite, J., et al., A candidate type 2 diabetes polymorphism near the HHEX locus affects acute glucose-stimulated insulin release in European populations: results from the EUGENE2 study, Diabetes, 2008, vol. 57, no. 2, pp. 514–517.

    Article  CAS  PubMed  Google Scholar 

  34. Pascoe, L., Tura, A., Patel, S.K., et al., Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function, Diabetes, 2007, vol. 56, no. 12, pp. 3101–3104.

    Article  CAS  PubMed  Google Scholar 

  35. Groenewoud, M.J., Dekker, J.M., Fritsche, A., et al., Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps, Diabetologia, 2008, vol. 51, no. 9, pp. 1659–1663.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, J., Bradfield, J.P., Zhang, H., et al., Examination of all type 2 diabetes GWAS loci reveals HHEXIDE as a locus influencing pediatric BMI, Diabetes, 2010, vol. 59, no. 3, pp. 751–755.

    Article  CAS  PubMed  Google Scholar 

  37. Matthews, D.R., Hosker, J.P., Rudenski, A.S., et al., Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man, Diabetologia, 1985, vol. 28, no. 7, pp. 412–419.

    Article  CAS  PubMed  Google Scholar 

  38. Johns, M.B. and Paulus-Thomas, J.E., Purification of human genomic DNA from whole blood using sodium perchlorate in place of phenol, Anal. Biochem., 1989, vol. 180, no. 2, pp. 276–278.

    Article  CAS  PubMed  Google Scholar 

  39. Kal’kulyator dlya rascheta statistiki v issledovaniyakh “sluchai–control” (Calculator for Statistics in the “Case–Control” Study). http://gen-exp.ru/calculator_or.php

  40. Lewis, C.M., Genetic association studies: design, analysis and interpretation, Brief Bioinf., 2002, vol. 3, no. 2, pp. 146–153.

    Article  CAS  Google Scholar 

  41. Scott, L.J., Mohlke, K.L., Bonnycastle, L.L., et al., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants, Science, 2007, vol. 316, no. 5829, pp. 1341–1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lyssenko, V., Lupi, R., Marchetti, P., et al., Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes, J. Clin. Invest., 2007, vol. 117, no. 8, pp. 2155–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Khodyrev.

Additional information

Original Russian Text © D.S. Khodyrev, A.G. Nikitin, A.N. Brovkin, E.Yu. Lavrikova, N.O. Lebedeva, O.K. Vikulova, M.Sh. Shamhalova, M.V. Shestakova, M.Yu. Mayorov, V.A. Potapov, V.V. Nosikov, A.V. Averyanov, 2016, published in Genetika, 2016, Vol. 52, No. 11, pp. 1318–1326.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodyrev, D.S., Nikitin, A.G., Brovkin, A.N. et al. The analysis of association between type 2 diabetes and polymorphic markers in the CDKAL1 gene and in the HHEX/IDE locus. Russ J Genet 52, 1192–1199 (2016). https://doi.org/10.1134/S1022795416110065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416110065

Keywords

Navigation