Log in

Influence of Iron Oxide Nanoparticles and Bulk (α-Fe2O3) on Metabolic and Physiological Characteristics of Oenothera biennis L. Plant

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effects of repeated foliar spray of nano and bulk iron oxide (α-Fe2O3) were physiologically investigated at four levels (0, 0.1, 0.25, and 0.5 g L–1) with and without citrate interaction on iron deficiency and excess stress during plant growth in pot conditions. There were no significant differences between nano and Balk treatments in terms of growth changes, iron absorption, and the possibility of transferring to the roots. But there were significant differences in terms of the antioxidant capacity variations, citrate detoxification effects, and the amounts of toxicity at high levels. Iron oxide increased total iron, active iron, chlorophyll, biomass, and antioxidants; at high levels, growth was reduced especially in nano. At all levels citrate made differences, so that at level 0.1 g L–1 like a nutritional operator increased biomass, chlorophyll and antioxidants. At 0.25 g L–1, there was antioxidant activity burst and chlorophylls increased; however, it reduced growth to similar conditions without citrate. At 0.5 g L–1, it decreased toxicity and iron availability but increased growth and antioxidants; these effects were more significant in nano. It seems that in nano treatments; enzymatic antioxidants, flavonoids, and phenolic compounds, and in the bulk; proline, carotenoids, and peroxidase enzymes were effective in the maximum decrease in oxidants. Confirming the importance of inducing an efficient antioxidant system in response to environmental stresses, here growth improvement of plants grown in iron-poor soils with iron oxide, and the healing effects of interacting with citrate in toxic conditions, at least in some cases, were related to the increase in antioxidant capacity and its vital role in the redox balance and stability of iron homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Li, J., Chang, P.R., **, H., Wang, Y., Yuan, H., and Ren, H., Physiological effects of magnetic iron oxide nanoparticles towards watermelon, J. Nanosci. Nanotechnol., 2013, vol. 13, p. 5561. https://doi.org/10.1166/jnn.2013.7533

    Article  CAS  PubMed  Google Scholar 

  2. Schmidt, W., Thomine, S., and Buckhout, T.J., Iron nutrition and interactions in plants, Front. Plant Sci., 2020, vol. 10, p. 1670. https://doi.org/10.3389/fpls.2019.01670

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rui, M., Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., Zhao, Q., Fan, X., Zhang, Z., Hou, T., and Zhu, S., Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea), Front. Plant Sci., 2016, vol. 7, p. 815. https://doi.org/10.3389/fpls.2016.00815

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alidoust, D. and Isoda, A., Effect of γFe2O3 nanoparticle on the photosynthetic characteristic of soybean (Glycine max (L.) Merr.): Foliar spray versus soil amendment, Acta Physiol. Plant., 2013, vol. 35, p. 3365. https://doi.org/10.1007/s11738-013-1369-8

    Article  CAS  Google Scholar 

  5. Guo, L., Liu, Y., Luo, L., Hussain, S.B., Bai, Y., and Alam, S.M., Comparative metabolites and citrate-degrading enzyme activities in citrus fruits reveal the role of balance between ACL and Cyt-ACO in metabolite conversions, Plants, 2020, vol. 9, p. 350. https://doi.org/10.3390/plants9030350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Asadi-Kavan, Zh., Khavari-Nejad, R.A., Iranbakhsh, A., and Najafi, F., Cooperative effects of iron oxide nanoparticle (α-Fe2O3) and citrate on germination and oxidative system of evening primrose (Oenothera biennis L.), J Plant Interact., 2020, vol. 15, p. 166. https://doi.org/10.1080/17429145.2020.1774671

    Article  CAS  Google Scholar 

  7. Greiner, S. and Köhl, K., Growing evening primroses (Oenothera), Front. Plant Sci., 2014, vol. 5, p. 38. https://doi.org/10.3389/fpls.2014.00038

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hwang, S.S., Park, J.S., and Namkoong, W., Ultrasonic-assisted extraction to release heavy metals from contaminated soil, J. Ind. Eng. Chem., 2007, vol. 13, p. 650.

    CAS  Google Scholar 

  9. Pandey, S.K. and Singh, H., A simple, cost-effective method for leaf area estimation, J. Bot., 2011, vol. 2011, p. 1. https://doi.org/10.1155/2011/658240

    Article  Google Scholar 

  10. Singh, M. and Singh, S., Net assimilation rate, relative growth rate, and yield of pea genotypes under different NaHCO3 concentrations, Biol. Plant., 1994, vol. 36, p. 145. https://doi.org/10.1007/BF02921282

    Article  CAS  Google Scholar 

  11. Raskar, S.V. and Laware, S.L., Effect of zinc oxide nanoparticles on cytology and seed germination in onion, Int. J. Curr. Microbiol. App. Sci., 2014, vol. 3, p. 467.

    CAS  Google Scholar 

  12. Tiquia, M.S. and Tam, N.F.Y., Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge, Bioresour. Technol., 1998, vol. 65, p. 43.

    Article  CAS  Google Scholar 

  13. Huang, B., Plant–Environment Interactions, Boca Raton, FL: CRC Press, 2006, 3rd ed., p. 388.

  14. Lichtenthaler, H.K. and Buschmann, C., Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy, Curr. Protoc. Food Anal. Chem., 2001, vol. 3, p. 821.

    Google Scholar 

  15. Wagner, G.J., Content and vacuole/extravacuole distribution of neutral sugar, free amino acids, and anthocyanin in protoplasts, Plant Physiol., 1979, vol. 64, p. 88. https://doi.org/10.1104/pp.64.1.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang, C.C., Yang, M.H., Wen, H.M., and Chern, J.C., Estimation of total flavonoid content in propolis by two complementary colorimetric methods, J. Food Drug Anal., 2002, vol. 10, p. 178. https://doi.org/10.12691/jnh-5-2-4

    Article  CAS  Google Scholar 

  17. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, p. 248. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  18. Manivannan, P., Jaleel, C.A., Somasundaram, R., and Panneerselvam, R., Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching, C. R. Biol., 2008, vol. 331, p. 418. https://doi.org/10.1016/j.crvi.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  19. Bates, L.S., Waldron, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studied, Plant Soil, 1973, vol. 39, p. 205. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  20. Kochert, G., Carbohydrate determination by phenol sulfuric acid method, Helebust, J.A. and Craig, J.S., Eds., Handbook of Ohicologia Method, 1978, p. 56.

  21. Soland, S.F. and Laima, S.K., Phenolics and cold tolerance of Brassica napus, Plant Agricul., 1999, vol. 1, p. 1.

    Google Scholar 

  22. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts: Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, p. 189. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  23. Alexieva, V., Sergiev, I., Mapelli, S., and Karanov, E., The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat, Plant Cell Environ., 2001, vol. 24, p. 1337. https://doi.org/10.1046/j.1365-3040.2001.00778.x

    Article  CAS  Google Scholar 

  24. Bajji, M., Kinet, J.M., and Lutts, S., The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat, Plant Growth Regul., 2002, vol. 36, p. 61. https://doi.org/10.1023/A:1014732714549

    Article  CAS  Google Scholar 

  25. Abe, N., Murata, T., and Hirota, A., Novel DPPH radical scavengers, bisorbicillin, and dimethyl trichodimerol, from a fungus, Biosci. Biotechnol. Biochem., 1998, vol. 62, p. 661. https://doi.org/10.1271/bbb.62.661

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Y.H., Ying, Y., Chen, J., and Wang, X.C., Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt tolerance, Plant Sci., 2004, vol. 167, p. 671.

    Article  CAS  Google Scholar 

  27. Zhang, J., Cui, S., Li, J., and Kirkham, M.B., Protoplasmic factors, antioxidant responses, and chilling resistance in maize, Plant Physiol. Biochem., 1995, vol. 33, p. 567.

    CAS  Google Scholar 

  28. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, p. 867.

    CAS  Google Scholar 

  29. Foyer, C.H. and Halliwell B., The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism, Planta, 1976, vol. 133, p. 21. https://doi.org/10.1007/BF00386001

    Article  CAS  PubMed  Google Scholar 

  30. Celik, M., Tureli, C., Celik, M., Yanar, Y., Erdem, U., and Kucukyilmaz, A., Fatty acid composition of the blue crab (Callinectes sapidus Rathbun, 1896) in the north-eastern Mediterranean, Food Chem., 2004, vol. 88, p. 271. https://doi.org/10.1016/J.foodchem.2004.01.038

    Article  CAS  Google Scholar 

  31. Katyal, J.C. and Sharma, B.D., A new technique of plant analysis to resolve iron chlorosis, Plant and Soil., 1980, vol. 55, p. 105. https://doi.org/10.1007/BF02149714

    Article  CAS  Google Scholar 

  32. Hu, J., Guo, H., Li, J., Wang, Y., **ao, L., and **ng, B., Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application, J. Nanobiotechnol., 2017, vol. 15, p. 51. https://doi.org/10.1186/s12951-017-0286-1

    Article  CAS  Google Scholar 

  33. Dhoke, Sh.K., Mahajan, P., Kamble, R., and Khanna A., Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method, Nanotechnol. Dev., 2013, vol. 3, p. 1.

    Article  CAS  Google Scholar 

  34. Merchant, S.S., Trace metal utilization in chloroplasts, in The Structure and Function of Plastids, Dordrecht, Springer, 2003, vol. 30, p. 199.

    Google Scholar 

  35. Roschzttardtz, H., Seguela-Arnaud, M., Briat, J.F., Vert, G., and Curie, C., The FRD3 Citrate efflux promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development, Plant Cell, 2011, vol. 23, p. 2725. https://doi.org/10.1105/tpc.111.088088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wills, R., Lee, T., Graham, D., McGlasson, W., and Hall, E., Postharvest. An Introduction to the Physiology and Handling of Fruit and Vegetables, Wallingford: CAB International, 1981. https://doi.org/10.1079/9781786391483.0000

    Book  Google Scholar 

  37. Halder, S., Mandal, A, Das, D., and Gupta, S., Chattopadhyay, A.P., Datta, A.K., Copper nanoparticle-induced macromutation in Macrotyloma uniflorum (Lam.) Verdc. (Leguminosae): A pioneer report, Genet. Resour. Crop Evol., 2015, vol. 62, p. 165. https://doi.org/10.1007/s10722-015-0216-8

    Article  CAS  Google Scholar 

  38. Barrios, A.C., Rico, C.M., Trujillo-Reyes, J., Medina-Velo, I.A., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants, Sci Total Environ., 2015, vol. 563, p. 956. https://doi.org/10.1016/j.scitotenv.2015.11.143

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Khavari-Nejad.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi-Kavan, Z., Khavari-Nejad, R.A., Iranbakhsh, A. et al. Influence of Iron Oxide Nanoparticles and Bulk (α-Fe2O3) on Metabolic and Physiological Characteristics of Oenothera biennis L. Plant. Russ J Plant Physiol 70, 101 (2023). https://doi.org/10.1134/S1021443723600101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723600101

Keywords:

Navigation